Peroxisome proliferator-activated receptor-gamma is a new therapeutic target in sepsis and inflammation.

Shock

Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA.

Published: May 2005

Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a member of the nuclear receptor superfamily and a ligand-activated transcription factor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. PPARgamma forms a heterodimer with the retinoid X receptor and upon ligand-activation binds to the PPAR response element in the promoter of genes to allow transcription. The class of insulin-sensitizing drugs known as thiazolidinediones have been identified as specific PPARgamma agonists that have allowed the characterization of many genes regulated by PPARgamma. Thiazolidinediones include rosiglitazone, pioglitazone, troglitazone, and ciglitazone. In addition to these synthetic agonists, cyclopentenone prostaglandins of the J2 series have been identified as natural ligands for PPARgamma. Several in vitro and in vivo studies have demonstrated that pharmacological activation of PPARgamma by 15-deoxy-Delta(12,14)-PGJ2 (15d-PGJ2) or thiazolidinediones has anti-inflammatory effects. This article provides an overview of the role of PPARgamma in regulating the inflammatory response and emphasizes the potential efficacy of PPARgamma ligands as novel therapeutic approaches beyond diabetes in sepsis, inflammation, and reperfusion injury.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.shk.0000160521.91363.88DOI Listing

Publication Analysis

Top Keywords

peroxisome proliferator-activated
8
proliferator-activated receptor-gamma
8
sepsis inflammation
8
ppargamma
8
receptor-gamma therapeutic
4
therapeutic target
4
target sepsis
4
inflammation peroxisome
4
receptor-gamma ppargamma
4
ppargamma member
4

Similar Publications

Gut Microbiome and Serum Metabolites in Neuropathic Pain: The PPARα Perspective.

Behav Brain Res

January 2025

Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China. Electronic address:

Neuropathic pain (NP) is a chronic disease state centred on neuroinflammation with a high prevalence and limited effective treatment options. Peroxisome proliferator-activated receptor α (PPARα) has emerged as a promising target for NP management due to its anti-inflammatory properties. Recent evidence highlights the critical role of the gut microbiome and its metabolites in NP pathogenesis.

View Article and Find Full Text PDF

Dual targeting PPARα and NPC1L1 metabolic vulnerabilities blocks tumorigenesis.

Cancer Lett

January 2025

Advanced Medical Research Institute, Qilu College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:

Dysregulated lipid metabolism is linked to tumor progression. In this study, we identified Niemann-Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. In breast cancer cells, PKM2 knockout (KO) enhanced NPC1L1 expression while downregulating peroxisome proliferator-activated receptor α (PPARα) signaling pathway.

View Article and Find Full Text PDF

L. is known in Europe for its cardioactivity-also in interrelation with known risk factors of the metabolic syndrome-just as Houtt. in East Asia; however, up to now, no active constituents could be identified.

View Article and Find Full Text PDF

The General Principle of the Warburg Effect as a Possible Approach for Cancer Immunotherapy: The Regulatory Effect of Plant Extracts Could Change the Game.

Molecules

January 2025

Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.

The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells.

View Article and Find Full Text PDF

Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds.

Int J Mol Sci

January 2025

Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia.

Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!