Members of the bone morphogenetic protein-1/tolloid (BMP-1/Tld) family of metalloproteinases, also known as procollagen C-proteinases (PCPs), control multiple biological events (including matrix assembly, cross-linking, cell adhesion/migration and pattern formation) through enzymatic processing of several extracellular substrates. PCP activities on fibrillar procollagens can be stimulated by another family of extracellular proteins, PCP enhancers (PCPE-1, PCPE-2), which lack intrinsic enzymatic activity. While PCPs have multiple substrates, the extent to which PCPEs is involved in the processing of proteins other than fibrillar procollagens is unknown. In the experiments reported here, PCPE-1 was found to have no effect on the in vitro BMP-1 processing of procollagen VII, the procollagen V N-propeptide, the laminin 5 gamma2 chain, osteoglycin, prolysyl oxidase, or chordin. In contrast, PCPE-1 enhanced C-terminal processing of human fibrillar procollagen III but only when this substrate was in its native, disulfide-bonded conformation. Surprisingly, processing of procollagen III continued to be enhanced when essentially all the triple-helical region was removed. These and previous results (Ricard-Blum, S., Bernocco, S., Font, B., Moali, C., Eichenberger, D., Farjanel, J., Burchardt, E. R., van der Rest, M., Kessler, E., and Hulmes, D. J. S. (2002) J. Biol. Chem. 277, 33864-33869; Bernocco, S., Steiglitz, B. M., Svergun, D. I., Petoukhov, M. V., Ruggiero, F., Ricard-Blum, S., Ebel, C., Geourjon, C., Deleage, G., Font, B., Eichenberger, D., Greenspan, D. S., and Hulmes, D. J. S. (2003) J. Biol. Chem. 278, 7199-7205) indicate that the mechanism of PCPE-1 action involves recognition sites in both the C-propeptide domain and in the C-telopeptide region of the procollagen molecule. PCPEs therefore define a new class of extracellular adaptor proteins that stimulate proteinase activity in a substrate-specific manner, thereby providing a new target for the selective regulation of PCP activity on fibrillar procollagen substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M501486200 | DOI Listing |
Nephrol Dial Transplant
January 2025
School of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Mandi, Himachal Pradesh, India.
Cardiorenal syndrome (CRS) is represented as an intricate dysfunctional interplay between the heart and kidneys, marked by cardiorenal inflammation and fibrosis. Unlike other organs, the repair process in cardiorenal injury involves a regenerative phase characterized by proliferation and polyploidization, followed by a subsequent pathogenic phase of fibrosis. In CRS, acute or chronic cardiorenal injury leads to hyperactive inflammation and fibrotic remodeling, associated with injury-mediated immune cell (Macrophages, Monocytes, and T-cells) infiltration and myofibroblast activation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA.
Collagens are the foundational component of diverse tissues, including skin, bone, cartilage, and basement membranes, and are the most abundant protein class in animals. The fibrillar collagens are large, complex, multidomain proteins, all containing the characteristic triple helix motif. The most prevalent collagens are heterotrimeric, meaning that cells express at least two distinctive procollagen polypeptides that must assemble into specific heterotrimer compositions.
View Article and Find Full Text PDFBiochimie
January 2025
Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Georgstraße 11, 32545, Bad Oeynhausen, Germany.
The collagen superfamily, as the major structural component of the extracellular matrix, encompasses 28 distinct subtypes, with type-I and -III forming fibrils crucial for the matrix scaffold. During collagen biogenesis, trimers of type-I and -III procollagen are secreted into the extracellular matrix. The N- and C-terminal propeptides of these trimers are proteolytically cleaved from procollagen during secretion, initiating collagen fibril formation.
View Article and Find Full Text PDFMatrix Biol
December 2024
Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France. Electronic address:
PCPE-2 was discovered at the beginning of this century, and was soon identified as a close homolog of PCPE-1 (procollagen C-proteinase enhancer 1). After the demonstration that it could also stimulate the proteolytic maturation of fibrillar procollagens by BMP-1/tolloid-like proteinases (BTPs), PCPE-2 did not attract much attention as it was thought to fulfill the same functions as PCPE-1 which was already well-described. However, the tissue distribution of PCPE-2 shows both common points and significant differences with PCPE-1, suggesting that their activities are not fully overlapping.
View Article and Find Full Text PDFJ Mol Biol
August 2024
Universite Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France. Electronic address:
The excessive deposition of fibrillar collagens is a hallmark of fibrosis. Collagen fibril formation requires proteolytic maturations by Procollagen N- and C-proteinases (PNPs and PCPs) to remove the N- and C-propeptides which maintain procollagens in the soluble form. Procollagen C-Proteinase Enhancer-1 (PCPE-1, a glycoprotein composed of two CUB domains and one NTR domain) is a regulatory protein that activates the C-terminal processing of procollagens by the main PCPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!