The ripening of a fleshy fruit represents the summation of an array of biochemical processes that are regulated by interactions between developmental programs and environmental inputs. Analysis of tomato (Solanum lycopersicum) mutants and inhibitor studies indicate that ethylene is necessary for full development of the ripening program of climacteric fruit such as tomato, yet ethylene alone is not sufficient. This suggests that an interaction between ethylene and nonethylene (or developmental) pathways mediates ripening. In this study, we have examined the physiological basis for ripening inhibition of the dominant Green-ripe (Gr) and Never-ripe 2 (Nr-2) mutants of tomato. Our data suggest that this inhibition is due to ethylene insensitivity in mutant fruit. Further investigation of ethylene responses in Gr and Nr-2 plants also revealed weak ethylene insensitivity during floral senescence and abscission and, during inhibition of root elongation, a phenotype associated with the triple response. However, ethylene-induced inhibition of hypocotyl elongation and petiole epinasty are normal in Gr and Nr-2, suggesting that these loci regulate a subset of ethylene responses. We have mapped both dominant mutations to a 2-cM overlapping region of the long arm of chromosome 1 of tomato, a region not previously linked to any known ethylene signaling loci. The phenotypic similarity and overlapping map location of these mutations suggest Gr and Nr-2 may be allelic and may possibly encode a novel component of the ethylene response pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1104181 | PMC |
http://dx.doi.org/10.1104/pp.104.057745 | DOI Listing |
Mater Horiz
January 2025
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Int J Mol Sci
November 2024
State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, China.
Transcription factors refer to types of proteins that perform significant functions in the process of gene expression regulation. The ethylene insensitive 3/ethylene insensitive 3-like () family, functioning as significant transcription factors regulating ethylene, plays a critical role in the growth and development of plants and participates in the plant's response to diverse environmental stresses. is an excellent native tree with high economic and ecological value.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran. Electronic address:
In nature, it is common for plants to be infected by multiple pathogens simultaneously, and deciphering the underlying mechanisms of such interactions has remained elusive. The occurrence of root-knot nematode (RKN), Meloidogyne incognita, and tomato yellow leaf curl virus (TYLCV; Begomovirus coheni) has been reported in most tomato cultivation areas. We investigated the interaction between RKN and TYLCV in tomato plants at phenotypic, biochemical, and gene expression levels.
View Article and Find Full Text PDFTrends Plant Sci
October 2024
College of Resources, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Investigation and Monitoring, Protection, and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China. Electronic address:
Abscisic acid (ABA) and the AP2/ERF (APETALA 2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor ABA INSENSITIVE 4 (ABI4) control plant growth and development. We review how singlet oxygen, which is produced in chloroplasts of the fluorescent mutant of Arabidopsis thaliana (arabidopsis), and ABI4 may cooperate in transcriptional and translational reprogramming to cause plants to halt growth or demise. Key elements of singlet oxygen- and ABI4-dependent chloroplast-to-nucleus retrograde signaling involve the chloroplast EXECUTER (EX) 1 and EX2 proteins as well as nuclear WRKY transcription factors.
View Article and Find Full Text PDFPlants (Basel)
September 2024
Seed Biology, UMR7622 CNRS-Sorbonne-Université, 75005 Paris, France.
The present review is focused on current findings on the involvement of ethylene in seed biology. The responsiveness of seeds to ethylene depends on the species and the dormancy status, improving concentrations ranging from 0.1 to 200 μL L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!