We develop a concept of fabrication of the multilayer network films on electrodes by exploring the ability of a Keggin-type polyoxometallate, phosphododecamolybdate (PMo(12)O(40)(3-)), to form stable anionic monolayers (templates) on carbon and metals including platinum. By repeated alternate treatments in the solution of PMo(12)O(40)(3-) (or in the colloidal suspension of polyoxometallate-protected Pt-nanoparticles) and in the solution of monomer (e.g. anilinium) cations, the amount of the material can be increased systematically (layer-by-layer) to form stable three-dimensional assemblies on electrode (e.g. glassy carbon) surfaces. In the resulting hybrid (organic-inorganic) films, the layers of negatively charged polyoxometallate, or polyoxometallate-protected (stabilized) Pt-nanoparticles, are linked or electrostatically attracted by ultra-thin layers of such positively charged conducting polymers as polyaniline (PANI), polypyrrole (PPy) or poly(3,4-ethylenedioxythiophene), PEDOT. Consequently, the attractive physicochemical properties of polymers and reactivity of polyoxometallate or noble metal particles are combined. The films are functionalized and show electrocatalytic properties towards reduction of nitrite, bromate, hydrogen peroxide or oxygen. They are of importance to the chemical and biochemical sensing as well as to the biochemical and medical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2004.06.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!