Lactoperoxidase (LPO) is found in mucosal surfaces and exocrine secretions including milk, tears and saliva and has physiological significance in antimicrobial defense. Its predominant physiological role is to convert hydrogen peroxide and thiocyanate in hypothiocyanite. In this study, the standard reduction potentials of all redox couples involved in the halogenation and peroxidase cycle of LPO have been determined by multi-mixing stopped-flow spectroscopy. The standard reduction potentials of the redox couples compound I/native LPO, compound I/compound II of LPO, and compound II/native LPO are (1.09 +/- 0.01) V, (1.14 +/- 0.02) V, and (1.04 +/- 0.02) V, respectively, at pH 7 and 25 degrees C. Thus, for the first time, a full description of these important thermodynamic parameters of lactoperoxidase has been performed, allowing a better understanding in the substantial differences in the oxidation of two- and one-electron donors by LPO and other members of the mammalian heme peroxidase superfamily.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2005.02.021DOI Listing

Publication Analysis

Top Keywords

standard reduction
12
reduction potentials
12
peroxidase cycle
8
potentials redox
8
redox couples
8
lpo compound
8
+/- 002
8
lpo
6
potentials couples
4
couples peroxidase
4

Similar Publications

The optimization of auto parts supply chain logistics plays a decisive role in the development of the automotive industry. To reduce logistics costs and improve transportation efficiency, this paper addresses the joint optimization problem of multi-vehicle pickup and delivery transportation paths under time window constraints, coupled with the three-dimensional loading of goods. The model considers mixed time windows, three-dimensional loading constraints, cyclic pickup and delivery paths, varying vehicle loads and volumes, flow balance, and time window constraints.

View Article and Find Full Text PDF

Alcohol-based fuels have shown high compatibility with spark-ignition (SI) engines, which require improvements in fuel efficiency and emissions reduction to meet modern environmental standards. While extensive research has been conducted on ethanol and other lower-order alcohols, there has been comparatively limited investigation into higher-order alcohols like butanol and pentanol as fuel alternatives. Previous studies on pentanol-gasoline blends in SI engines have demonstrated improved engine performance and reduced emissions.

View Article and Find Full Text PDF

Background: Previous research in adults has suggested that healthy dietary patterns could be an effective strategy for blood pressure (BP) control. However, during adolescence, the scientific literature examining this relationship is scarce and controversial since inverse and null associations have been reported. Thus, the aim of our study was to analyze the relationship between the level of adherence to the Mediterranean diet (MD) and consumption of fresh fruits and vegetables at baseline with changes in BP over a two-year period during adolescence.

View Article and Find Full Text PDF

Background: Conventional photodynamic therapy (cPDT) is an effective treatment option for field cancerization and multiple actinic keratoses (AK). The main side effect of cPDT is pain during illumination which in severe cases might necessitate early termination of treatment. Modification of treatment parameters such as light dose and fluence rate is a promising approach to mitigate PDT-associated pain.

View Article and Find Full Text PDF

Background And Objectives: The global problem of urinary tract infections (UTIs) caused by antibiotic-resistant bacteria is due to limited treatment options. This study aimed to examine the prevalence, etiology, and management implications of causing UTI at Imam Hospital Ardabil, Iran.

Materials And Methods: 2340 samples of retrospective data on causing UTIs were collected at Imam Hospital in Ardabil, Iran, spanning from 2012 to 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!