The antibacterial activity of polyoxometalates (PMs) against Helicobacter pylori was investigated based on determinations of minimum inhibitory concentration (MIC) and fractional inhibitory concentration (FIC), time-killing of the bacteria, bacterial morphology and PM-uptake into the bacteria cell. The result of MIC values revealed that, of 13 PMs used in this study, highly negative-charged polyoxotungstates, such as K27[KAs4W40O140] and K18[KSb9W21O86], and Keggin-structural polyoxotungstates exhibited a potent antibacterial activity with the MIC values of less than 256 microg/ml. The former was the most active, and superior to metronidazole (MTZ) against MTZ-susceptible and resistant strains and also to clarithromycin (CLR) against CLR-resistant strains. In contrast, most of polyoxomolybdates showed little antibacterial activity with the MIC values of more than 256 microg/ml. The result of FIC index values indicated that the antibacterial polyoxotungstates had partially synergistic effect in combination with MTZ and CLR but indifferent effect in combination with amoxicillin (AMX). From the results of the time-killing and scanning electron microscope images, K27[KAs4W40O140] and K18[KSb9W21O86] proved the concentration-dependent bactericidal activity with the morphological change from bacillary form to coccoid form, while Keggin-structural K5[SiV(V)W11O40] showed the bacteriostatic activity with small change of morphology to coccoid form. The fluorescent X-ray analysis demonstrated that these polyoxotungstates were taken into the bacteria cell. It is pointed out that the Keggin-structure and/or high negativity polyoxotungstates are an important factor for the antibacterial activity against H. pylori.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2005.01.010DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
20
k27[kas4w40o140] k18[ksb9w21o86]
12
mic values
12
polyoxotungstates k27[kas4w40o140]
8
k18[ksb9w21o86] keggin-structural
8
keggin-structural polyoxotungstates
8
helicobacter pylori
8
inhibitory concentration
8
bacteria cell
8
activity mic
8

Similar Publications

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Characterization and genomic insights into bacteriophages Kpph1 and Kpph9 against hypervirulent carbapenem-resistant .

Virulence

December 2025

Jiangxi Institute of Respiratory Disease, Jiangxi Clinical Research Center for Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China.

The increasing incidence of infections attributed to hypervirulent carbapenem-resistant (Hv-CRKp) is of considerable concern. Bacteriophages, also known as phages, are viruses that specifically infect bacteria; thus, phage-based therapies offer promising alternatives to antibiotic treatments targeting Hv-CRKp infections. In this study, two isolated bacteriophages, Kpph1 and Kpph9, were characterized for their specificity against the Hv-CRKp NUHL30457 strain that possesses a K2 capsule serotype.

View Article and Find Full Text PDF

Seven-membered nitrogen-containing heterocycles, particularly azepine-based compounds, represent an intriguing class of molecules with vast arrays of applications. These compounds have garnered considerable attention in synthetic and medicinal chemistry due to their non-planar, non-aromatic features, which offer structural flexibility and diversity to design new drugs with improved pharmacological properties. This review summarizes the recent advances in the synthesis of azepine derivatives, including eco-friendly methodologies that align with the principles of green chemistry, which emphasize atom economy, sustainability, and waste reduction.

View Article and Find Full Text PDF

Fine particulate matter (PM2.5) is known to exacerbate chronic respiratory disorders, primarily by inducing inflammatory responses and mucus overproduction. Perilla leaves are reported to have significant health benefits, such as antioxidant, antibacterial, and antiallergic properties, attributed to phenolic compounds that vary depending on genetic diversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!