[Mutation analysis of glycogen debrancher enzyme gene in five Chinese patients with glycogen storage disease type III].

Zhonghua Er Ke Za Zhi

Department of Pediatrics, PUMC Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.

Published: February 2005

Objective: Type III glycogen storage disease (GSD-III, McKusick 232400), is a rare autosomal recessive disorder, also known as Cori's or Forbe's disease. The affected enzyme is amylo-1,6-glucosidase, 4-alpha-glucanotransferase (glycogen debrancher enzyme, GDE or amylogluco-sidase, AGL), which is responsible for the debranching of the glycogen molecule during catabolism. The AGL gene is located on chromosome 1p21 and contains 35 exons translated in a monomeric protein product. The clinical manifestations of GSD-III are represented by hepatomegaly, recurrent hypoglycemia, seizures, growth failure, dysmorphism, hyperlipidemia, raised transaminases and creatine kinase concentrations and, in a number of subjects, myopathy and cardiomyopathy. The hepatocellular adenoma, hepatocellular carcinoma, diabetes mellitus and liver fibrosis remain rare events. The diagnosis of debrancher deficiency was established by laboratory tests, electromyography (EMG), and muscle and liver biopsy.

Methods: We studied six GSD-III families after patients or parental consent and the clinical characteristics were documented. Analysis of 33 exons and part exon-intron boundaries of the AGL gene in patients and their parents were carried out by PCR and direct DNA sequencing.

Results: The clinical features included hepatomegaly, splenomegaly, recurrent hypoglycemia, hyperlipidemia, growth failure, raised transaminases and acidosis. Administration of epinephrine 2 hours after a carbohydrate meal could provoke normal rise of blood glucose in the affected individuals, but could not evoke any response after overnight fasting. Administration of raw-corn-starch could maintain normoglycemia and improve the disease condition. Mutation analysis for patient 1 was normal. Patient 2 had a compound heterozygote: a C-to-T transition at nucleotide 1294 (come from father, 1294C > T, L 298 L) in exon 8 and a G-to-T transition at nucleotide 4747 (from mother, 4747G > T, E1450X) in exon 34. Patient 3 had a compound heterozygote: a C-to-T transition at nucleotide 1294 (from father, 1294C > T, L 298 L) in exon 8 and a G-to-A transition at nucleotide -10 (from mother, -10G > A) in exon 3. Patient 4 was a homozygote: an insertion of a nucleotide CT into position +65 in exon 35 (4664 ins CT). Patient 5 had a compound heterozygote: a 8 bp deletion at nucleotide 2341 (from father, 2341delGCCATAGA, frameshift mutation) in exon 16 and a G-to-A transition at nucleotide 1559 (from mother, 1559G > A, R 387 Q) in exon 10. Patient 6 had a compound heterozygote: a T-to-G transition at nucleotide 1686 (from mother, 1686T > G, Y429 X) in exon 12 and a G-to-A transition at nucleotide 3742 (from father, 3742G > A, G 1115 R) in exon 26.

Conclusion: GSD-III patients have variable phenotypic characteristics. Administration of raw-corn-starch can effectively improve the disease outcome. We identified 8 new mutations on AGL gene through nucleotide sequence analysis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

transition nucleotide
28
patient compound
16
compound heterozygote
16
agl gene
12
exon patient
12
exon g-to-a
12
g-to-a transition
12
nucleotide
10
exon
9
glycogen debrancher
8

Similar Publications

The nucleotides play multiple fundamental roles that are essential in biochemical enzymatic reactions and signaling pathways. Many diseases are closely associated with their dysregulation. Therefore, reliable and sensitive optical probes to discriminate various nucleotides are essential in biochemistry, drug discovery, and disease diagnosis.

View Article and Find Full Text PDF

ADP-inhibited structure of non-catalytic site-depleted FF-ATPase from thermophilic Bacillus sp. PS-3.

Biochim Biophys Acta Bioenerg

January 2025

Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan. Electronic address:

The F domain of FF-ATP synthases/ATPases (FF) possesses three catalytic sites on the three αβ interfaces, termed αβ, αβ, and αβ, located mainly on the β subunits. The enzyme also has three non-catalytic ATP-binding sites on the three αβ interfaces, located mainly on the α subunits. When ATP does not bind to the non-catalytic site, FF becomes significantly prone to ADP inhibition, ultimately resulting in the loss of ATPase activity.

View Article and Find Full Text PDF

Genomic Analysis Reveals Novel Genes and Adaptive Mechanisms for Artificial Diet Utilization in the Silkworm Strain Guican No.5.

Insects

December 2024

Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546399, China.

The transition from traditional mulberry leaf feeding to artificial diet cultivation represents a major advancement in modern sericulture, yet the genetic mechanisms driving this adaptation remain largely unexplored. This study investigates the genomic basis of artificial diet adaptation in the silkworm strain Guican No.5 through whole-genome resequencing and transcriptome analysis.

View Article and Find Full Text PDF

Background: Glycyrrhiza glabra, which is widely used in medicine and therapy, is known as the 'king of traditional Chinese medicine'. In this study, we successfully assembled and annotated the mitochondrial and chloroplast genomes of G. glabra via high-throughput sequencing technology, combining the advantages of short-read (Illumina) and long-read (Oxford Nanopore) sequencing.

View Article and Find Full Text PDF

MARTRE family proteins negatively regulate CCR4-NOT activity to protect poly(A) tail length and promote translation of maternal mRNA.

Nat Commun

January 2025

Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.

Article Synopsis
  • The study focuses on the role of a newly discovered protein family called MARTRE in regulating the poly(A) tail length of maternal mRNA during early embryo development in mice.
  • MARTRE proteins inhibit the deadenylase CCR4-NOT, helping to maintain longer poly(A) tails and enhance mRNA translation efficiency.
  • Deleting the Martre genes leads to shortened poly(A) tails, reduced mRNA translation, and delays in early embryonic development, emphasizing the importance of MARTRE in the translation of maternal mRNA.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!