The carrier-envelope phase of a laser pulse has recently become an important quantity in extreme nonlinear optics. Because of the topological Gouy phase, it changes while the pulse propagates through the focus of a lens. This variation is measured by a simple solid-state-based approach. The experimental results are analyzed by comparison with simple analytical model calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.30.000753 | DOI Listing |
We describe improved methods for locating the fixed point of an optical frequency comb. Two continuous-wave lasers are locked to a reference frequency comb and track the optical phase of a second comb-under-test (CUT) at two points separated by approximately 1.6 THz.
View Article and Find Full Text PDFNat Commun
November 2024
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
Attosecond science has demonstrated that electrons can be controlled on the sub-cycle time scale of an optical waveform, paving the way towards optical frequency electronics. However, these experiments historically relied on high-energy laser pulses and detection not suitable for microelectronic integration. For practical optical frequency electronics, a system suitable for integration and capable of generating detectable signals with low pulse energies is needed.
View Article and Find Full Text PDFThe carrier-envelope phase (CEP) of a laser pulse plays a crucial role in laser-matter interactions. The inherent shot-to-shot instability of the CEP necessitates single-shot detection, which is not only vital for stabilizing the CEP but also for observing ultrafast phenomena that conventional averaging techniques cannot resolve. In this study, we demonstrate a novel approach utilizing strong-field ionization in ambient air for single-shot CEP measurement.
View Article and Find Full Text PDFIn this paper, we propose a high-precision dual-comb ranging (DCR) method for short-distance measurement, avoiding carrier-envelope-offset locking. Cross-polarization detection is introduced, which makes better use of the intrinsic coherence of interferogram pairs over a short distance. We analyze the noise in the DCR system and propose a carrier-wave phase difference (CPD) calculation algorithm based on centroid extraction.
View Article and Find Full Text PDFWe propose a novel, to our knowledge, method for modulating and real-time monitoring of the carrier-envelope phase (CEP) of terahertz (THz) pulses. CEP is an essential parameter in the interaction of THz waves with matter due to the difference in temporal symmetry when the carrier is extended for several cycles. CEP can be continuously modulated at full range with high speed by oscillating the optical path length of the Michelson interferometer under 1 µm, as confirmed by electro-optic (EO) sampling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!