Combining a dc and a short pulse (approximately 1 ns) as the probe beam in the pump-probe configuration of Brillouin-based distributed sensors allows us to represent the Brillouin spectrum as a top Lorentzian-like portion and a bottom Gaussian-like portion. Because of the interaction of these two parts, the Lorentzian-like portion carries spatial information that can be extracted within centimeter spatial resolution. Using this information, we develop a spectrum deconvolution method, which considers the location correlation of the strain distribution, to find the number of Brillouin peaks and their frequencies in the top Lorentzian-like portion and hence achieve accurate strain information. An optimum level of dc to pulse power for the best signal and position detection capability is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.30.000705 | DOI Listing |
Opt Lett
April 2005
Fiber Optics Group, Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
Combining a dc and a short pulse (approximately 1 ns) as the probe beam in the pump-probe configuration of Brillouin-based distributed sensors allows us to represent the Brillouin spectrum as a top Lorentzian-like portion and a bottom Gaussian-like portion. Because of the interaction of these two parts, the Lorentzian-like portion carries spatial information that can be extracted within centimeter spatial resolution. Using this information, we develop a spectrum deconvolution method, which considers the location correlation of the strain distribution, to find the number of Brillouin peaks and their frequencies in the top Lorentzian-like portion and hence achieve accurate strain information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!