OCTN1 (SLC22A4) transports cationic compounds such as tetraethylammonium in a pH-sensitive and sodium-independent manner in cultured cells, and is expressed in wide variety of tissues, including kidney, muscle, placenta, heart, and others. This study focused on the clarification of its subcellular distribution in kidney and on its driving force to throw light on the pharmacological and physiological roles of OCTN1. Uptake of [14C]tetraethylammonium by membrane vesicles prepared from HEK293 cells stably transfected with human OCTN1 cDNA was osmolarity-sensitive, and the Km of tetraethylammonium was 1.28 mM at intravesicular and extravesicular pH values of 6.0 and 7.4, respectively. Tetraethylammonium uptake was pH-dependent, and overshoot uptake was observed in the presence of an outwardly directed proton gradient. A protonophore and membrane potential affected the overshoot uptake. Furthermore, preloading tetraethylammonium in the vesicles significantly increased the rate of uptake of [14C]tetraethylammonium. In mouse kidney, OCTN1 was expressed predominantly at the apical membrane of cortical proximal tubular epithelial cells. It was concluded that OCTN1 is involved in renal excretion of organic cations across the apical membrane in a pH-dependent, membrane potential-sensitive manner and is affected significantly by the organic cations on the trans side, showing counter transport activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mp0340082 | DOI Listing |
Sci Total Environ
January 2025
Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:
This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok 10400, Thailand.
: Pinocembrin is a promising drug candidate for treating ischemic stroke. The interaction of pinocembrin with drug transporters and drug-metabolizing enzymes is not fully revealed. The present study aims to evaluate the interaction potential of pinocembrin with cytochrome P450 (CYP450: CYP2B6, CYP2C9, and CYP2C19) and drug transporters including organic anion transporters (OAT1 and OAT3), organic cation transporters (OCT1 and OCT2), multidrug and toxin extrusion (MATE1 and MATE2, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP).
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
(1) Background: Prostate cancer treatment efficacy is significantly influenced by androgen receptor (AR) signaling pathways. SLC22A3, a membrane transporter, has been linked to SNP rs9364554 risk loci for drug efficacy in prostate cancer. (2) Methods: We examined the location of SNP rs9364554 in the genome and utilized TCGA and other publicly available datasets to analyze the association of this SNP with transcription levels.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Arsenic (As) and antimony (Sb), with analogy structure, belong to VA group in the periodic table and pose a great public concern due to their potential carcinogenicity. The speciation distribution, migration and transformation, enrichment and retention, as well as bioavailability and toxicity of As and Sb are influenced by several environmental processes on mineral surfaces, including adsorption/desorption, coordination/precipitation, and oxidation/reduction. These interfacial reactions are influenced by the crystal facet of minerals with different atomic and electronic structures.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
In this study, synthetic wastewater containing 110 µg/L arsenate (As(V)), 0-20 mg/L fulvic acid (FA), and 0-12.3 mg/L phosphate was treated with 3 mg/L Fe. The mechanisms of FA and phosphate effects on As(V) removal by ferric chloride were determined using 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!