In this study, we generated 40 somatic cell cloned (scNT) piglets. Of these, five piglets were stillborn, 22 scNT piglets died suddenly within the first week of life, and 1 piglet died after 40 days. Twelve scNT piglets are still healthy. The birth weights of compromised scNT piglets in comparison with those of normal scNT piglets are significantly reduced (0.80 +/- 0.29 vs 1.27 +/- 0.30 kg, p < 0.05), in spite of longer gestation (114 versus 120 day). Significant findings from histological examinations showed that approximately 25% (7/28) of scNT piglets showed severe congestion of lung and liver or neutrophilic inflammation in brain indicating that unexpected phenotypes can appear as a result of somatic cell cloning. Two-dimensional gel electrophoresis experiments revealed changes in the responses of several detoxification-related proteins related to stress and inflammation and found significant alterations in myocardium-specific proteins, indicating hemodynamic disorder. scNT piglets that survived to adulthood did not show any abnormality except skin and hair color depigmentation. The present study suggests that cerebromeningitis and hemodynamic disorder are a major risk factor for sudden early death of scNT piglets. Although we cannot completely exclude the possibility that scNT piglets are susceptible to specific respiratory infections, our data suggests that the early death of scNT clones is due to cardiopulmonary functional abnormalities and cerebromeningitis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pmic.200401079 | DOI Listing |
J Vis Exp
October 2024
Centro de Estudos sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo.
This protocol aims to demonstrate the surgical technique for transferring cloned pig embryos to the oviduct, a method widely used in the production of genetically modified pigs for biomedical research. Nine gilts underwent hormonal synchronization and laparotomy for the transfer of cloned embryos produced by somatic cell nuclear transfer (SCNT) at stages of up to 4 cells on day 2 to the oviduct. Gestational diagnosis was conducted via ultrasound examination 30 days post-transfer surgery.
View Article and Find Full Text PDFTheriogenology
December 2024
Key Lab of Animal Cell Technology, National Institute of Animal Science, Hanoi, Viet Nam.
We aimed to establish efficient donor cells to produce piglets by somatic cell nuclear transfer (SCNT) of the endangered Vietnamese Ỉ pig. In Experiment 1, we assessed the effects of cell passages on the in vitro development of SCNT embryos. Cells with five and six passages showed significantly cleaved and blastocyst formation rates (86.
View Article and Find Full Text PDFXenotransplantation
August 2024
Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming, China.
Background: The number of multigene-modified donor pigs for xenotransplantation is increasing with the advent of gene-editing technologies. However, it remains unclear which gene combination is suitable for specific organ transplantation.
Methods: In this study, we utilized CRISPR/Cas9 gene editing technology, piggyBac transposon system, and somatic cell cloning to construct GTKO/hCD55/hTBM/hCD39 four-gene-edited cloned (GEC) pigs and performed kidney transplantation from pig to rhesus monkey to evaluate the effectiveness of these GEC pigs.
Auckland Island pigs represent an inbred population of feral pigs isolated on the sub-Antarctic island for over 100 years. The animals have been maintained under pathogen-free conditions in New Zealand; they are well characterized virologically and have been used as donor sources in first clinical trials of porcine neonatal islet cell transplantation for the treatment of human diabetes patients. The animals do not carry any of the xenotransplantation-relevant viruses, and in the first clinical trials, no porcine viruses, including porcine endogenous retroviruses (PERVs) were transmitted to the human recipients.
View Article and Find Full Text PDFCurr Issues Mol Biol
November 2023
Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea.
Although the efficiency of cloning remains very low, this technique has become the most reliable way to produce transgenic pigs. However, the high rate of abnormal offspring such as an enlarged tongue lowers the cloning efficiency by reducing the early survivability of piglets. Thus, the present study was conducted to identify the characteristics of the enlarged tongue from cloned piglets by histologic and transcriptomic analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!