Regulated splicing of fibronectin (FN) occurs during the mesenchymal to chondrocyte transition and ultimately results in the relative enrichment of an extra domain B (EDB) exon-containing FN isoform with the suggestion that FN isoforms may play a functional role in chondrogenesis. Promotion of chondrogenesis can also be achieved by treatment with transforming growth factor-beta (TGF-beta), which also regulates FN isoform expression. We have examined the effects of TGF-beta treatment on the assumption of the chondrogenic phenotype in the teratoma-derived cell line ATDC5 and tested whether these effects on chondrogenesis are paralleled by appropriate changes in FN isoform expression. ATDC5 cells were maintained in a pre-chondrogenic state and, in this state, treated with 10 ng/ml TGF-beta. The cells started to elaborate a matrix rich in sulfated proteoglycans, such that within the first 12 days of culture, TGF-beta1 treatment appeared to slightly accelerate early acquisition of an Alcian blue-stained matrix, and caused a dose- and time-dependent decrease in collagen type I expression; changes in collagen type II expression were variable. At later times, cells treated with TGF-beta became indistinguishable from those of the controls. Interestingly, TGF-beta treatment caused a significant dose- and time-dependent decrease in the proportion of FN containing the extra domain A (EDA) and the EDB exons. These data suggest that TGF-beta induces the early stages of chondrogenic maturation in this pre-chondrogenic line and that TGF-beta treatment increases expression of FN isoforms that lack the EDA and EDB exons.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.20427DOI Listing

Publication Analysis

Top Keywords

isoform expression
12
tgf-beta treatment
12
transforming growth
8
extra domain
8
caused dose-
8
dose- time-dependent
8
time-dependent decrease
8
collagen type
8
type expression
8
eda edb
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!