The p16INK4A/CDKN2A (p16) gene on chromosome 9p21 is inactivated in >90% of invasive pancreatic cancers. In 40% of pancreatic cancers the p16 gene is inactivated by homozygous deletion, in 40% by an intragenic mutation coupled with loss of the second allele, and in 10-15% by hypermethylation of the p16 gene promoter. Immunohistochemical labeling for the p16 gene product parallels gene status, but does not provide information of the mechanism of p16 gene inactivation. The methylthioadenosine phosphorylase gene (MTAP) gene also resides on chromosome 9p21, approximately 100 kb telomeric to the p16 gene. The MTAP gene is frequently contained within p16 homozygous deletions, producing concordant loss of both p16 and MTAP gene expression. Concordant loss of both p16 and MTAP protein expression can therefore be used as a surrogate marker for p16 homozygous deletion. Here we immunolabeled a series of pancreatic intraepithelial neoplasia (PanIN) lesions of various histologic grades for the p16 and MTAP gene products using a high-throughput PanIN tissue microarray (TMA) format. We demonstrate concordant loss of p16 and MTAP protein expression in 6/73 (8%) PanINs, including five high-grade lesions and one low-grade lesion. Immunolabeling for both p16 and MTAP protein expression provides a tool to evaluate tissues with intact morphology for p16 gene homozygous deletions. The concordant loss of expression of both genes in PanIN lesions demonstrates that homozygous deletions of the p16 tumor suppressor gene can occur in noninvasive precursor lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1038/modpathol.3800377DOI Listing

Publication Analysis

Top Keywords

p16 gene
28
concordant loss
20
p16 mtap
20
mtap gene
16
p16
15
gene
14
homozygous deletion
12
homozygous deletions
12
loss p16
12
mtap protein
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!