Overlapping reading frames in closely related human papillomaviruses result in modular rates of selection within E2.

J Gen Virol

Department of Pediatrics, The Albert Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.

Published: May 2005

AI Article Synopsis

  • A core set of four ORFs (E1, E2, L1, L2) are highly conserved in all papillomaviruses (PVs) due to their crucial role in viral propagation.
  • Recent sequencing of human papillomavirus (HPV) subtypes revealed that the E2 protein has a higher dN/dS ratio, indicating a greater rate of non-synonymous mutations compared to E1, L1, and L2, particularly in its hinge region.
  • The evolutionary dynamics of E2's hinge region, which overlaps with the E4 ORF, suggests complex selection processes, including both positive and purifying selection, which may point to E4's functional significance within the HPV genome.

Article Abstract

A core group of four open reading frames (ORFs) is present in all known papillomaviruses (PVs): the E1 and E2 replication/transcription proteins and the L1 and L2 structural proteins. Because they are involved in processes that are essential to PV propagation, the sequences of these proteins are well-conserved. However, sequencing of novel subtypes for human papillomaviruses (HPV) 54 (AE9) and 82 (AE2/IS39), coupled to analysis of four other closely related genital HPV pairs, indicated that E2 has a higher dN/dS ratio than E1, L1 or L2. The elevated ratio is not homogeneous across the length of the ORF, but instead varies with respect to E2's three domains. The E2 hinge region is of particular interest, because its hypervariability (dN/dS>1) differs markedly from the two domains that it joins: the transcription-activation domain and the DNA-binding domain. Deciphering whether the hinge region's high rate of non-synonymous change is the result of positive Darwinian selection or relaxed constraint depends on the evolutionary behaviour of E4, an ORF that overlaps E2. The E2 hinge region is contained within E4 and non-synonymous changes in the hinge are associated with a disproportionate amount of synonymous change in E4, a case of simultaneous positive and purifying selection in overlapping reading frames. Modular rates of selection among E2 domains are a likely consequence of the presence of an embedded E4. E4 appears to be positioned in a part of the HPV genome that can tolerate non-synonymous change and purifying selection of E4 may be indicative of its functional importance.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.80747-0DOI Listing

Publication Analysis

Top Keywords

reading frames
12
overlapping reading
8
human papillomaviruses
8
modular rates
8
rates selection
8
hinge region
8
non-synonymous change
8
purifying selection
8
selection
5
frames closely
4

Similar Publications

Ribosomes scanning from the mRNA 5' cap to the start codon may initiate at upstream open reading frames (uORFs), decreasing protein biosynthesis. Termination at a uORF can lead to re-initiation, where 40S subunits resume scanning and initiate another translation event downstream. The noncanonical translation factors MCTS1-DENR participate in re-initiation at specific uORFs, but knowledge of other trans-acting factors or uORF features influencing re-initiation is limited.

View Article and Find Full Text PDF

Biochemical characterization and inhibitor potential of African swine fever virus thymidine kinase.

Int J Biol Macromol

December 2024

Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand. Electronic address:

African Swine Fever (ASF) is a highly contagious disease affecting both domestic pigs and wild boars. In domestic pigs, ASF is a rapidly-progressing disease with a mortality rate reaching 100 %, causing tremendous economic loss in affected areas. ASFV is caused by African Swine Fever Virus (ASFV), which is a large, enveloped double-stranded DNA virus belonging to the Asfarviridae family.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) have become a viable source of novel antibiotics that are effective against human pathogenic bacteria. In this study, we construct a bank of culturable marine biofilm bacteria constituting 713 strains and their nearly complete genomes and predict AMPs using ribosome profiling and deep learning. Compared with previous approaches, ribosome profiling has improved the identification and validation of small open reading frames (sORFs) for AMP prediction.

View Article and Find Full Text PDF

Large-scale proteogenomics characterization of microproteins in Mycobacterium tuberculosis.

Sci Rep

December 2024

Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, 90619-900, Brazil.

Tuberculosis remains a burden to this day, due to the rise of multi and extensively drug-resistant bacterial strains. The genome of Mycobacterium tuberculosis (Mtb) strain H37Rv underwent an annotation process that excluded small Open Reading Frames (smORFs), which encode a class of peptides and small proteins collectively known as microproteins. As a result, there is an overlooked part of its proteome that is a rich source of potentially essential, druggable molecular targets.

View Article and Find Full Text PDF

As the number and variety of assembled genomes continues to grow, the number of annotated genomes is falling behind, particularly for eukaryotes. DNA-based mapping tools help to address this challenge, but they are only able to transfer annotation between closely-related species. Here we introduce LiftOn, a homology-based software tool that integrates DNA and protein alignments to enhance the accuracy of genome-scale annotation and to allow mapping between relatively distant species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!