A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Validation of the human ozone challenge model as a tool for assessing anti-inflammatory drugs in early development. | LitMetric

This study aimed to test the utility of the ozone challenge model for profiling novel compounds designed to reduce airway inflammation. The authors used a randomized, double-dummy, double-blind, placebo-controlled 3-period crossover design alternating single orally inhaled doses of fluticasone propionate (inhaled corticosteroids, 2 mg), oral prednisolone (oral corticosteroids, 50 mg), or matched placebo. At a 2-week interval, 18 healthy ozone responders (>10% increase in sputum neutrophils) underwent a 3-hour ozone (250 ppb)/intermittent exercise challenge starting 1 hour after drug treatment. Airway inflammation was assessed at 2 hours (breath condensate) and 3 hours (induced sputum) after ozone challenge. Compared to placebo, pretreatment with inhaled corticosteroids or oral corticosteroids resulted in a significant reduction (mean [95% confidence interval]) of sputum neutrophils by 62% (35%, 77%) and 64% (39%, 79%) and of sputum supernatant myeloperoxidase by 55% (41%, 66%) and 42% (25%, 56%), respectively. The authors conclude that an optimized ozone challenge model (including ozone responders and ensuring adequate drug levels during exposure) may be useful for testing novel anti-inflammatory compounds in early development.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0091270004273527DOI Listing

Publication Analysis

Top Keywords

ozone challenge
16
challenge model
12
early development
8
airway inflammation
8
inhaled corticosteroids
8
corticosteroids oral
8
oral corticosteroids
8
ozone responders
8
sputum neutrophils
8
ozone
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!