Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To identify the mechanisms underlying muscle aging, we have undertaken a high-resolution differential proteomic analysis of gastrocnemius muscle in young adults, mature adults, and old LOU/c/jall rats. Two-dimensional gel electrophoresis and subsequent MALDI-ToF mass spectrometry analyses led to the identification of 40 differentially expressed proteins. Strikingly, most differences characterized old (30-month) animals, whereas young (7-month) and mature (18-month) adults exhibited similar patterns of expression. Important modifications in contractile (actin, myosin light-chains, troponins-T) and cytoskeletal (desmin, tubulin) proteins, and in essential regulatory proteins (gelsolin, myosin binding proteins, CapZ-beta, P23), likely account for dysfunctions in old muscle force generation and speed of contraction. Other features support decreases in cytosolic (triose-phosphate isomerase, enolase, glycerol-3-P dehydrogenase, creatine kinase) and mitochondrial (isocitrate dehydrogenase, cytochrome-c oxidase) energy metabolisms. Muscle aging is often associated with increased oxidative stress. Accordingly, we observed differential regulation of molecular chaperones (hsp20, hsp27, reticuloplasmin ER60) and of proteins implicated in reactive aldehyde detoxification (aldehyde dehydrogenase, glutathione transferase, glyoxalase). We further noticed up-regulation of proteins involved in transcriptional elongation (RNA capping protein) and RNA-editing (Apobec2). Most of these proteins were previously unrecognized as differentially expressed in old muscles, and they represent novel starting points for elucidating the mechanisms of muscle aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.04-3084fje | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!