The human stress-activated protein kin17 accumulates in the nuclei of proliferating cells with predominant colocalization with sites of active DNA replication. The distribution of kin17 protein is in equilibrium between chromatin-DNA and the nuclear matrix. An increased association with nonchromatin nuclear structure is observed in S-phase cells. We demonstrated here that kin17 protein strongly associates in vivo with DNA fragments containing replication origins in both human HeLa and monkey CV-1 cells. This association was 10-fold higher than that observed with nonorigin control DNA fragments in exponentially growing cells. In addition, the association of kin17 protein to DNA fragments containing replication origins was also analyzed as a function of the cell cycle. High binding of kin17 protein was found at the G(1)/S border and throughout the S phase and was negligible in both G(0) and M phases. Specific monoclonal antibodies against kin17 protein induced a threefold inhibition of in vitro DNA replication of a plasmid containing a minimal replication origin that could be partially restored by the addition of recombinant kin17 protein. Immunoelectron microscopy confirmed the colocalization of kin17 protein with replication proteins like RPA, PCNA, and DNA polymerase alpha. A two-step chromatographic fractionation of nuclear extracts from HeLa cells revealed that kin17 protein localized in vivo in distinct protein complexes of high molecular weight. We found that kin17 protein purified within an approximately 600-kDa protein complex able to support in vitro DNA replication by means of two different biochemical methods designed to isolate replication complexes. In addition, the reduced in vitro DNA replication activity of the multiprotein replication complex after immunodepletion for kin17 protein highlighted for a direct role in DNA replication at the origins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1084281 | PMC |
http://dx.doi.org/10.1128/MCB.25.9.3814-3830.2005 | DOI Listing |
Oncol Rep
February 2025
Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China.
Pancreatic cancer is an aggressive tumor, which is often associated with a poor clinical prognosis and resistance to conventional chemotherapy. Therefore, there is a need to identify new therapeutic markers for pancreatic cancer. Although KIN17 is a highly expressed DNA‑ and RNA‑binding protein in a number of types of human cancer, its role in pancreatic cancer development, especially in relation to progression, is currently unknown.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.
View Article and Find Full Text PDFAnal Methods
July 2024
Department of Medical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.
It has been well-elaborated that KIN17 protein is closely related to the expression, development and prognosis of liver cancer; however, till date, there has been no study about detecting the KIN17 protein in serum, which is important to developing clinical applications. The objective of this work is to detect serum KIN17 protein by the ELISA method and to explore the diagnostic significance of the KIN17 protein in liver cancer. First, we verified the ELISA method for serum KIN17 measurement according to five aspects: accuracy, precision, specificity, stability and detection limit.
View Article and Find Full Text PDFHum Cell
September 2024
Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, P. R. China.
The limited response of hepatocellular carcinoma (HCC) to chemotherapy drugs has always been a bottleneck in therapy. DNA damage repair is a major reason for chemoresistance. Previous studies have confirmed that KIN17 affects chemosensitivity.
View Article and Find Full Text PDFCell Rep
March 2024
Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA. Electronic address:
During asymmetric division of Drosophila larval neuroblasts, the fate determinant Prospero (Pros) and its adaptor Miranda (Mira) are segregated to the basal cortex through atypical protein kinase C (aPKC) phosphorylation of Mira and displacement from the apical cortex, but Mira localization after aPKC phosphorylation is not well understood. We identify Kin17, a DNA replication and repair protein, as a regulator of Mira localization during asymmetric cell division. Loss of Kin17 leads to aberrant localization of Mira and Pros to the centrosome, cytoplasm, and nucleus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!