Rationale And Objectives: Surgical planning now routinely uses both two-dimensional (2D) and three-dimensional (3D) models that integrate data from multiple imaging modalities, each highlighting one or more aspects of morphology or function. We performed a preliminary evaluation of the use of spherical harmonics (SH) in approximating the 3D shape and estimating the volume of brain tumors of varying characteristics.
Materials And Methods: Magnetic resonance (MR) images from five patients with brain tumors were selected randomly from our MR-guided neurosurgical practice. Standardized mean square reconstruction errors (SMSRE) by tumor volume were measured. Validation metrics for comparing performances of the SH method against segmented contours (SC) were the dice similarity coefficient (DSC) and standardized Euclidean distance (SED) measure.
Results: Tumor volume range was 22,413-85,189 mm3, and range of number of vertices in triangulated models was 3674-6544. At SH approximations with degree of at least 30, SMSRE were within 1.66 x 10(-5) mm(-1). Summary measures yielded a DSC range of 0.89-0.99 (pooled median, 0.97 and significantly >0.7; P < .001) and an SED range of 0.0002-0.0028 (pooled median, 0.0005).
Conclusion: 3D shapes of tumors may be approximated by using SH for neurosurgical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1415223 | PMC |
http://dx.doi.org/10.1016/j.acra.2004.11.032 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
This study investigates the motion of an electron in a Coulomb potential driven by an intense linearly polarized XUV laser pulse analyzed using Gordon-Volkov wave functions. The wave function is decomposed into spherical partial waves to model the scattered electron wave packet after the recollision with a proton. This interaction triggers high harmonic generation, producing coherent X-ray pulses with frequencies that are integer multiples of the XUV field.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong.
This paper investigates the effects of particle morphology (PM) and particle size distribution (PSD) on the micro-macro mechanical behaviours of granular soils through a novel X-ray micro-computed tomography (μCT)-based discrete element method (DEM) technique. This technique contains the grain-scale property extraction by the X-ray μCT, DEM parameter calibration by the one-to-one mapping technique, and the massive derivative DEM simulations. In total, 25 DEM samples were generated with a consideration of six PSDs and four PMs.
View Article and Find Full Text PDFJpn J Ophthalmol
January 2025
Department of Ophthalmology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
Purpose: Chemical chelation with ethylenediaminetetraacetic acid (EDTA) is an established treatment for calcific band keratopathy (CBK), whereas removal of calcium deposits from the subepithelial layer of the cornea may cause corneal irregularity. Using Fourier harmonic analysis, we analyzed the corneal topography in eyes with CBK treated by EDTA chelation.
Study Design: Retrospective, single-center study.
Nature
January 2025
Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands.
Seismic tomographic models based only on wave velocities have limited ability to distinguish between a thermal or compositional origin for Earth's 3D structure. Complementing wave velocities with attenuation observations can make that distinction, which is fundamental for understanding mantle convection evolution. However, global 3D attenuation models are only available for the upper mantle at present.
View Article and Find Full Text PDFUltrasonics
January 2025
School of Biological Science and Medical Engineering, Beihang University, Beijing, China. Electronic address:
Transcranial focused ultrasound (tFUS) has been gaining increased attention as a non-invasive modality for treating brain diseases. However, accurately focusing on brain structures remains a challenge as the ultrasound is severely distorted by the presence of the skull. In this article, we propose a promising distortion correction method based on spherical wave expansions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!