Myopia progression is specified by a double exponential growth function.

Optom Vis Sci

Myopia Research Center, New England College of Optometry, Boston, Massachusetts 02115, USA.

Published: April 2005

Purpose: The purpose of this study was to demonstrate how well a modified Gompertz double exponential growth function delineates the diverse courses of myopia progression found in individual eyes. The function is: R = Re + Rc(0.07295)(a(x - t0)) where the spherical equivalent refractive error at a given age R equals the initial refractive error (Re) plus the overall refractive change (Rc) times a double exponential function with the base (0.07295) representing the proportion of Rc that occurs when maximum acceleration is reached, a is a curvature coefficient, t0 is the age of onset and x is age.

Methods: This function was fit to longitudinal refractive data (spherical equivalents) for both eyes of 36 myopic children. The fits were required to meet a stringent set of criteria, including fitting transitions in and out of myopia progression and having no systematic errors or arbitrary constants.

Results: Correlation between values on the refractive function and corresponding data of individual eyes is high (mean r = 0.973 +/- 0.020), the sum of squares between the data and function is low, and all other criteria are met. The rates of refractive change and acceleration were derivable from this function. It has been shown that, if peak acceleration rate is used as a criterion for the onset of myopia progression, then myopization onset starts a year earlier (mean = 8.93 years) than when a -0.50-D onset criterion is used (mean = 9.93 years), and it usually starts before the spherical equivalent reaches zero (mean R = +0.09 D). Age of onset is highly correlated with the duration of myopia progression (r = 0.693), which in turn is correlated with the amount of myopia achieved (r = 0.443).

Conclusions: We demonstrate that the double exponential function delineates the dynamics of myopia progression onset, offset, and the derivatives that describe the mechanisms underlying the growth process that causes myopia and have explained the advantages of this function. The function can be used to more accurately portray the course of individual subject's myopic progression.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.opx.0000159370.66540.34DOI Listing

Publication Analysis

Top Keywords

myopia progression
24
double exponential
16
function
11
myopia
8
exponential growth
8
growth function
8
function delineates
8
individual eyes
8
spherical equivalent
8
refractive error
8

Similar Publications

The rising prevalence of myopia is a significant global health concern. Atropine eye drops are commonly used to slow myopia progression in children, but their long-term use raises concern about intraocular pressure (IOP). This study uses SHapley Additive exPlanations (SHAP) to improve the interpretability of machine learning (ML) model predicting end IOP, offering clinicians explainable insights for personalized patient management.

View Article and Find Full Text PDF

Research Tendency and Frontiers of Multifocal Lenses in Myopic Control in the Past Two Decades: A Bibliometric Analysis.

Healthcare (Basel)

January 2025

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.

This study aimed to analyze the research progress on the use of a multifocal lens for myopic control throughout the 21st century, utilizing bibliometric analysis. Publications related to multifocal lenses from 2001 to 2024 were searched on the Web of Science core collection (WoSCC) database. VOSviewer (Version 1.

View Article and Find Full Text PDF

To investigate the pattern and threshold of physiological growth, defining as axial length (AL) elongation that results in little refraction progression, among Chinese children and teenagers, a total of 916 children aged between 7 and 18 years from a 6-year longitudinal cohort study were included for analysis. Ocular biometry, cycloplegic refraction and demographic data were obtained annually. Physiological growth was calculated based on myopic progression and Gullstrand eye model, respectively.

View Article and Find Full Text PDF

Dynamic Accommodation Responses in Subjects Wearing Myopia Control Spectacles Modifying Peripheral Refraction.

Invest Ophthalmol Vis Sci

January 2025

Laboratorio de Óptica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain.

Purpose: Peripheral optics have been suggested to play a role in myopia progression, with accommodation responses also considered a potential contributor. This study aimed to investigate whether modifications in peripheral optics through different spectacle lenses affect accommodation responses.

Methods: Dynamic accommodation responses were assessed using a double-pass instrument while switching the target from distance (3 m for 3 seconds) to near (0.

View Article and Find Full Text PDF

Purpose: To describe a three-phase surgical approach for managing progressive visual decline in a patient with myopia magna and a history of epikeratophakia.

Methods: A 55-year-old woman with previous epikeratophakia surgery in both eyes experienced progressive visual deterioration. The three-phase approach included: (1) removal of the epikeratophakia lenticule, (2) cataract extraction with intraocular lens implantation, and (3) transepithelial topography-guided photorefractive keratectomy (trans-PRK).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!