The octopus arm requires special motor control schemes because it consists almost entirely of muscles and lacks a rigid skeletal support. Here we present a 2D dynamic model of the octopus arm to explore possible strategies of movement control in this muscular hydrostat. The arm is modeled as a multisegment structure, each segment containing longitudinal and transverse muscles and maintaining a constant volume, a prominent feature of muscular hydrostats. The input to the model is the degree of activation of each of its muscles. The model includes the external forces of gravity, buoyancy, and water drag forces (experimentally estimated here). It also includes the internal forces generated by the arm muscles and the forces responsible for maintaining a constant volume. Using this dynamic model to investigate the octopus reaching movement and to explore the mechanisms of bend propagation that characterize this movement, we found the following. 1) A simple command producing a wave of muscle activation moving at a constant velocity is sufficient to replicate the natural reaching movements with similar kinematic features. 2) The biomechanical mechanism that produces the reaching movement is a stiffening wave of muscle contraction that pushes a bend forward along the arm. 3) The perpendicular drag coefficient for an octopus arm is nearly 50 times larger than the tangential drag coefficient. During a reaching movement, only a small portion of the arm is oriented perpendicular to the direction of movement, thus minimizing the drag force.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.00684.2004DOI Listing

Publication Analysis

Top Keywords

octopus arm
16
reaching movement
16
dynamic model
12
model octopus
8
arm
8
octopus reaching
8
maintaining constant
8
constant volume
8
wave muscle
8
drag coefficient
8

Similar Publications

An Octopus-Inspired Soft Pneumatic Robotic Arm.

Biomimetics (Basel)

December 2024

Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR-71410 Heraklion, Greece.

Article Synopsis
  • The paper discusses a soft robot arm inspired by the octopus, focusing on its design and control methods.
  • The arm, made of soft silicone, features multiple pneumatically actuated chambers that allow for versatile bending, length adjustment, and twisting motions.
  • The design includes experimental evaluation techniques that utilize visual feedback to track the arm's shape and position in real time.
View Article and Find Full Text PDF

Soft actuators hold great promise for applications in biomimetic robots, artificial muscles, and drug delivery systems due to their adaptability in diverse environments. A critical aspect of designing thermally responsive soft actuators is to achieve spatially programmable actuation under a global thermal stimulus. Different local actuation behaviors can be encoded in one actuator to enable complex morphing structures for different tasks.

View Article and Find Full Text PDF

Bioinspired design and validation of a soft robotic end-effector with integrated shape memory alloy-driven suction capabilities.

Bioinspir Biomim

December 2024

Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.

The exploration of adaptive robotic systems capable of performing complex tasks in unstructured environments, such as underwater salvage operations, presents a significant challenge. Traditional rigid grippers often struggle with adaptability, whereas bioinspired soft grippers offer enhanced flexibility and adaptability to varied object shapes. In this study, we present a novel bioinspired soft robotic gripper integrated with a shape memory alloy (SMA) actuated suction cup, inspired by the versatile grasping strategies of octopus arms and suckers.

View Article and Find Full Text PDF
Article Synopsis
  • - Muscular hydrostats, like octopus arms and elephant trunks, lack bones, granting them extraordinary flexibility and the ability to reshape themselves effectively.
  • - The arrangement of muscle fibers in these structures acts like a complex mechanical program that helps control intricate shapes and movements.
  • - Research combining imaging, biomechanics, and simulations led to the creation of an octopus-inspired arm with 200 muscle groups, showcasing innovative design and control principles relevant to robotics that allow for simple yet effective manipulation across various tasks.
View Article and Find Full Text PDF

The octopus simplified nervous system holds the potential to reveal principles of motor circuits and improve brain-machine interface devices through computational modeling with machine learning and statistical analysis. Here, an array of carbon electrodes providing single-unit electrophysiology recordings were implanted into the octopus anterior nerve cord. The number of spikes and arm movements in response to stimulation at different locations along the arm were recorded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!