Using electron microscopy, we analyzed the interaction of bacterially expressed full-length p53, p53(1-393), and its C-terminal fragment, p53(320-393), with long (approximately 3000 bp) dsDNA in linear and supercoiled (|DeltaLk| approximately 4-6) forms containing or lacking the p53 recognition sequence (p53CON). The main structural feature of the complexes formed by either protein was a DNA-protein filament, in which two DNA duplexes are linked (synapsed) via bound protein tetramers. The efficiency of the synapse, reflected in its length and the fraction of molecules exhibiting DNA-protein filaments, was significantly modulated by the molecular form of the protein and the topological state of the DNA. With linear DNA, the synapse yield promoted by the C-terminus fragment was very low, but the full-length protein was effective in linking noncontiguous duplexes, leading to the formation of intramolecular loops constrained at their bases by short regions of synapsed DNA duplexes. When the linear DNA contained p53CON, regions of preferential sequence, i.e., encompassing p53CON and probably p53CON-like sequences, were predominantly synapsed, indicating a sequence specificity of the p53 core domain. With scDNA, the synapse yield was significantly higher compared to the linear counterparts and was weakly dependent on the sign of superhelicity and presence or absence of p53CON. However, the full-length protein was more effective in promoting DNA synapses compared to the C-terminal fragment. The overall structure of the DNA-protein filaments was apparently similar for either protein form, although the apparent width differed slightly (approximately 7-9 nm and approximately 10-12 nm for p53(320-393) and p53(1-393), respectively). No distortion of the DNA helices involved in the synapse was found. We conclude that the structural similarity of DNA-protein filaments observed for both proteins is attributable mainly to the C-terminus, and that the yield is dictated by the specific and possibly nonspecific interactions of the core domain in combination with DNA topology. Possible implications for the sequestering of p53 in DNA-protein filaments are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2004.12.042DOI Listing

Publication Analysis

Top Keywords

dna-protein filaments
20
sequestering p53
8
p53 dna-protein
8
electron microscopy
8
c-terminal fragment
8
dna
8
dna duplexes
8
linear dna
8
synapse yield
8
full-length protein
8

Similar Publications

Homologous recombination (HR) is a high-fidelity DNA repair pathway that uses a homologous DNA sequence as a template. Recombinase proteins are the central HR players in the three kingdoms of life. RecA/RadA/Rad51 assemble on ssDNA, generated after the processing of double-strand breaks or stalled replication forks into an active and dynamic presynaptic helical nucleofilament.

View Article and Find Full Text PDF

Linear Dichroism Measurements for the Study of Protein-DNA Interactions.

Int J Mol Sci

November 2023

Department of Chemical and Biological Engineering, Chemistry, Chalmers University of Technology, 412 96 Gothenburg, Sweden.

Linear dichroism (LD) is a differential polarized light absorption spectroscopy used for studying filamentous molecules such as DNA and protein filaments. In this study, we review the applications of LD for the analysis of DNA-protein interactions. LD signals can be measured in a solution by aligning the sample using flow-induced shear force or a strong electric field.

View Article and Find Full Text PDF

The mechanics of mitotic chromosomes.

Q Rev Biophys

September 2021

Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands.

Condensation and faithful separation of the genome are crucial for the cellular life cycle. During chromosome segregation, mechanical forces generated by the mitotic spindle pull apart the sister chromatids. The mechanical nature of this process has motivated a lot of research interest into the mechanical properties of mitotic chromosomes.

View Article and Find Full Text PDF

Bacterial RecA and eukaryotic Rad51 are recombinases indispensable for DNA homologous recombination and repair of double-stranded DNA breaks. Understanding the functions and biophysical properties of the DNA recombinases benefits the research in human medicine such as cancer biology. Single-molecule techniques provide the mechanistic details of complex biological reactions.

View Article and Find Full Text PDF

Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization.

J Proteomics

May 2021

The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel. Electronic address:

Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!