Membrane destabilizing properties of cell-penetrating peptides.

Biophys Chem

Department of Chemistry and Bioscience, Chalmers University of Technology, Gothenburg, Sweden.

Published: April 2005

Although cell-penetrating peptides (CPPs), also denoted protein transduction domains (PTDs), have been widely used for intracellular delivery of large and hydrophilic molecules, the mechanism of uptake is still poorly understood. In a recent live cell study of the uptake of penetratin and tryptophan-containing analogues of Tat(48-60) and oligoarginine, denoted TatP59W, TatLysP59W and R(7)W, respectively, it was found that both endocytotic and non-endocytotic uptake pathways are involved [Thoren et al., Biochem. Biophys. Res. Commun. 307 (2003) 100-107]. Non-endocytotic uptake was only observed for the arginine-rich peptides TatP59W and R(7)W. In this paper, the interactions of penetratin, R(7)W, TatP59W and TatLysP59W with phospholipid vesicles are compared in the search for an understanding of the mechanisms for cellular uptake. While R(7)W, TatP59W and TatLysP59W are found to promote vesicle fusion, indicated by mixing of membrane components, penetratin merely induces vesicle aggregation. Studies of the leakage from dye-loaded vesicles indicate that none of the peptides forms membrane pores and that vesicle fusion is not accompanied by leakage of the aqueous contents of the vesicles. These observations are important for a proper interpretation of future experiments on the interactions of these peptides with model membranes. We suggest that the discovered variations in propensity to destabilize phospholipid bilayers between the peptides investigated, in some cases sufficient to induce fusion, may be related to their different cellular uptake properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2004.11.016DOI Listing

Publication Analysis

Top Keywords

tatp59w tatlysp59w
12
cell-penetrating peptides
8
non-endocytotic uptake
8
r7w tatp59w
8
cellular uptake
8
vesicle fusion
8
peptides
6
uptake
6
membrane destabilizing
4
destabilizing properties
4

Similar Publications

Although cell-penetrating peptides (CPPs), also denoted protein transduction domains (PTDs), have been widely used for intracellular delivery of large and hydrophilic molecules, the mechanism of uptake is still poorly understood. In a recent live cell study of the uptake of penetratin and tryptophan-containing analogues of Tat(48-60) and oligoarginine, denoted TatP59W, TatLysP59W and R(7)W, respectively, it was found that both endocytotic and non-endocytotic uptake pathways are involved [Thoren et al., Biochem.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) have been extensively studied during the past decade, because of their ability to promote the cellular uptake of various cargo molecules, e.g., oligonucleotides and proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!