Kynurenine 3-mono-oxygenase (KMO, kynurenine hydroxylase) inhibitors increase brain kynurenic acid (KYNA) synthesis and cause pharmacological actions possibly mediated by a reduced activity of excitatory synapses. We used in vivo microdialysis and passive avoidance to study the effects of local KYNA or systemic KMO inhibitor administration on glutamate (GLU) neurotransmission. Local application of KYNA (30-100 nM) through reverse microdialysis reduced GLU content in caudate and cortical dialysates by 75 and 55%, respectively. No changes were found in the hippocampus. Systemic administration of Ro 61-8048 (4-40 mg/kg) increased KYNA levels in dialysates obtained from the cortex (from 10.3 +/- 1.9 to 45.5 +/- 15 nM), caudate (from 2.4 +/- 0.8 to 9.5 +/- 0.9 nM) and hippocampus (from 7.7 +/- 1.7 to 19.2 +/- 3.5 nM). It also caused a parallel robust decrease in GLU levels in the dialysates collected from the caudate (from 2.2 +/- 0.5 to 0.63 +/- 0.05 microM) but not in those collected from the parietal cortex or the hippocampus. In a passive avoidance paradigm, the administration of the NMDA receptor antagonist MK-801 (0.1 mg/kg) reduced, while Ro 61-8048 (4-80 mg/kg) did not change the latency time of entering into the dark compartment on the recall trial. Our data show that KMO inhibitors increase brain KYNA synthesis and selectively reduce GLU extracellular concentration in the basal ganglia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropharm.2004.10.019 | DOI Listing |
Int J Tryptophan Res
April 2019
Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.
Background: The kynurenine pathway enzymes, breaking down tryptophan, are abundant in placental tissue. These metabolites are involved in immunoregulatory mechanisms, although the role of this pathway in pre-eclampsia (PE) has only begun to be characterized. Here, we determined tryptophan and metabolite levels together with the expression of kynurenine pathway enzymes and inflammatory factors in placental tissue from women with and without PE.
View Article and Find Full Text PDFJ Am Soc Nephrol
November 2016
Mount Desert Island Biological Laboratory, Bar Harbor, Maine;
Changes in metabolite levels of the kynurenine pathway have been observed in patients with CKD, suggesting involvement of this pathway in disease pathogenesis. Our recent genetic analysis in the mouse identified the kynurenine 3-mono-oxygenase (KMO) gene (Kmo) as a candidate gene associated with albuminuria. This study investigated this association in more detail.
View Article and Find Full Text PDFNeurochem Int
November 2016
Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK. Electronic address:
To quantify the full range of tryptophan metabolites along the kynurenine pathway, a liquid chromatography - tandem mass spectrometry method was developed and used to analyse brain extracts of rodents treated with the kynurenine-3-mono-oxygenase (KMO) inhibitor Ro61-8048 during pregnancy. There were significant increases in the levels of kynurenine, kynurenic acid, anthranilic acid and 3-hydroxy-kynurenine (3-HK) in the maternal brain after 5 h but not 24 h, while the embryos exhibited high levels of kynurenine, kynurenic acid and anthranilic acid after 5 h which were maintained at 24 h post-treatment. At 24 h there was also a strong trend to an increase in quinolinic acid levels (P = 0.
View Article and Find Full Text PDFNeuropharmacology
May 2005
Department of Pharmacology, University of Florence, Viale Pieraccini 6, 50134 Firenze, Italy.
Adv Exp Med Biol
September 2004
Dipartimento di Farmacologia Preclinica e Clinica, Università di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy.
Kynurenine 3-mono-oxygenase (KMO) inhibitors facilitate kynurenic acid (KYNA) neosynthesis and reduce the formation of 3OH-kynurenine (3-HK) and quinolinic acid (QUIN). They also attenuate post-ischemic brain damage and decrease glutamate (Glu) content in brain extracellular spaces. To investigate KMO mechanism(s) of neuroprotection, we performed experiments in gerbils subjected to bilateral carotid occlusion and in organotypic rat hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!