Trying to understand the complex interactions that substrates and inhibitors have with the efflux transporter P-glycoprotein has been the subject of various publications. In this work, we have confined our study to substrates by picking a diverse set of 129 compounds based on the efflux ratios from Caco-2 permeability measurements. These compounds were then evaluated for P-glycoprotein inhibition using a calcein-AM assay. The subsequent data was used in a 3D-QSAR analysis using GRIND pharmacophore-based and physicochemical descriptors. Pharmacophore-based descriptors produced a much more robust model than the one obtained from physicochemical-based descriptors. This supports the process proposed by Seelig and co-workers previously published whereby the substrate enters the membrane as the first step and is then recognized by P-glycoprotein in a second step. The strong correlation, highlighted by PLS statistical analysis, between pharmacophoric descriptors and inhibition values suggests that substrate interaction, with perhaps the mouth of the protein or another binding site, plays a key role in the efflux process, yielding a model in which diffusion across the membrane is less important than substrate-protein interaction. One pharmacophore emerged from the analysis of the model. We pose that the recognition elements, at least determined by the molecules used in this study, are two hydrophobic groups 16.5 A apart and two hydrogen-bond-acceptor groups 11.5 A apart and that the dimensions of the molecule also plays a role in its recognition as a substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0491851DOI Listing

Publication Analysis

Top Keywords

pharmacophore hypothesis
4
p-glycoprotein
4
hypothesis p-glycoprotein
4
substrate
4
p-glycoprotein substrate
4
substrate recognition
4
recognition grind-based
4
grind-based 3d-qsar
4
3d-qsar understand
4
understand complex
4

Similar Publications

Ligand-based cheminformatics and free energy-inspired molecular simulations for prioritizing and optimizing G-protein coupled receptor kinase-6 (GRK6) inhibitors in multiple myeloma treatment.

Comput Biol Chem

January 2025

Drug Discovery and Development Laboratory (DDD Lab), Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:

Multiple myeloma (MM) is the second most frequently diagnosed hematological malignancy, presenting limited treatment options with no curative potential and significant drug resistance. Recent studies involving genetic knockdown established the crucial role of GRK6 in upholding the viability of MM cells, emphasizing the need to identify potential inhibitors. Computational exploration of GRK6 inhibitors has not been attempted previously.

View Article and Find Full Text PDF

Histone deacetylase (HDAC)-6 has overwhelming implications in multiple cancers and neurodegenerative disorders. Unusual HDAC6 expression modulates various signalling mechanisms which in turn forms the aetiology of the above-mentioned disorders. Thus, restoring the typical activity of HDAC6 through small molecules may prove as a promising approach to beat these disorders.

View Article and Find Full Text PDF

Pan-genome analysis and drug repurposing strategies for extensively drug-resistant Salmonella Typhi: Subtractive genomics and e-pharmacophore approaches.

Int J Biol Macromol

December 2024

Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. Electronic address:

Article Synopsis
  • The study sequenced the genome of a new drug-resistant Salmonella Typhi strain, identifying it as JRCGR-ST-AK02, with a genome size of approximately 4.78 million base pairs and 4,864 genes.
  • Taxonomic classification utilized multiple analysis methods, revealing a large number of core genes focused on essential functions and carbohydrate metabolism.
  • The research identified the PocR protein as a potential drug target, screening FDA-approved drugs and finding Cangrelor and Pentagastrin as promising candidates for treating XDR Salmonella, supported by strong binding dynamics from molecular simulation.
View Article and Find Full Text PDF

In our preliminary studies, the extract demonstrated inhibition of calcium phosphate (brushite) crystals. Human serum albumin (HSA) is known to act as a promoter of brushite crystal growth. Therefore, the present study aims to explore the molecular mechanisms involved in brushite crystal nephrolithiasis by conducting molecular docking of phytoconstituents from with HSA.

View Article and Find Full Text PDF

Revealing 5-(3,5-difluorobenzyl)-1H-indazole as the active pharmacophore of ALK/ROS1 dual inhibitors through theoretical calculations and biological activity evaluations.

Bioorg Chem

January 2025

Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi, 330013, China. Electronic address:

Anaplastic lymphoma kinase (ALK) and tyrosine protein kinase (ROS1) are recognized as driver genes in lung cancer, with dual inhibition of both targets offering a promising approach to enhance therapeutic outcomes in non-small cell lung cancer (NSCLC). Although numerous ALK/ROS1 inhibitors have received FDA approval, detailed research into the essential active structural motifs within these inhibitors remains limited. Addressing this gap, the current study employed computer-aided drug design (CADD) methodologies, incorporating bioisosteric and conformational similarity principles to design and synthesize 31 dual-target 2-morpholinobenzamide derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!