Most model-based three-dimensional (3-D) object recognition systems use information from a single view of an object. However, a single view may not contain sufficient features to recognize it unambiguously. Further, two objects may have all views in common with respect to a given feature set, and may be distinguished only through a sequence of views. A further complication arises when in an image, we do not have a complete view of an object. This paper presents a new online scheme for the recognition and pose estimation of a large isolated 3-D object, which may not entirely fit in a camera's field of view. We consider an uncalibrated projective camera, and consider the case when the internal parameters of the camera may be varied either unintentionally, or on purpose. The scheme uses a probabilistic reasoning framework for recognition and next-view planning. We show results of successful recognition and pose estimation even in cases of a high degree of interpretation ambiguity associated with the initial view.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/tsmcb.2004.842414 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!