Syringacin 4-A, a bacteriocin produced by Pseudomonas syrinagae 4-A, was obtained by induction with ultraviolet irradiation or mitomycin C. Approximately 1,000-fold purification of the bacteriocin was achieved by manganous chloride precipitation, differential centrifugation, and chromatography on hydroxyapatite columns. The purified syngacin was homogeneous on hydroxyapatite columns and sucrose density gradients; it also sedimented as a single entity in the analytical ultracentrifuge. The buoyant density of purified syringacin in cesium chloride was 1.294 g/ml. The sedimentation coefficient was calculated as 120S, and the diffusion coefficient was 6.49 x 10(-8) cm(2)/s. The molecular weight was calculated as 1.6 x 10(7) from physical data and 1.7 x 10(7) from biological data. The syringacin was composed of about 88.4% protein, 8.5% arabinose, 2.2% galacturonic acid, and 0.7% glucosamine. Amino acid analysis indicated a predominance of leucine (12.1%), aspartic acid (12.2%), and glutamic acid (12.7%). The ultraviolet spectrum showed a maximum absorbance peak at 276 nm. The syringacin was heat and alcohol sensitive, but resistant to trypsin, chymotrypsin, carboxypeptidase, Pronase, protease, lysozyme, steapsin, deoxyribonuclease, and ribonuclease. Maximum pH stability was between 5 and 8. Crude bacteriocin was stable at room temperature for at least a year, and purified material was stable for at least 3 months at 4 C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC429050 | PMC |
http://dx.doi.org/10.1128/AAC.6.1.76 | DOI Listing |
Antimicrob Agents Chemother
July 1974
Syringacin 4-A, a bacteriocin produced by Pseudomonas syrinagae 4-A, was obtained by induction with ultraviolet irradiation or mitomycin C. Approximately 1,000-fold purification of the bacteriocin was achieved by manganous chloride precipitation, differential centrifugation, and chromatography on hydroxyapatite columns. The purified syngacin was homogeneous on hydroxyapatite columns and sucrose density gradients; it also sedimented as a single entity in the analytical ultracentrifuge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!