Within the framework of liver transplantation, arterialisation of the portal vein in the case of non-recanalisable thrombosis has been reactivated. However, one of the consequences of this vascular reconstruction is the development of hepatic fibrosis. Clinical experience has shown that the development of fibrosis can be avoided by reducing portal inflow. We present, as a model for the induction of hepatic fibrosis, techniques of PVA, including transplantation. For PVA, several different techniques were used: the first with reduction of the portal inflow over a stent inserted in the right renal artery (PVA-B), the second with unrestricted flow using an aortic-portal segment (PVA-APS). The third technique was orthotopic liver transplantation with unrestricted portal arterialisation (OLTx-APS). Portal blood flow was measured with an ultrasonic flow probe. To determine the degree of hepatic fibrosis the amount of hydroxyproline was measured. Quantification of relative transcript levels of procollagen I was effected with real-time PCR using the TaqMan technology on a lightcycler instrument. The extracellular matrix was visualised with picro-sirius staining. Measurements with the ultrasonic probe showed a significant increase in flow rates, both with reduced (PVA-B) and unrestricted inflow (PVA-APS; OLTx-APS). The lowest survival rate (58%) was found in the group with unrestricted portal inflow. The reason for this was a high rate of thrombosis in the in the portal vascular tree (4 out of 12). In the OLTx-APS group four animals died within the first 3 postoperative days (69%), as a result of protracted postoperative shock. The overall survival rate was the highest (85%) in the group undergoing PVA with reduction of the portal inflow. PVA with unrestricted inflow was followed by a significant increase in extracellular collagen, which showed a clear correlation with the increase in the amount of hydroxyproline, the level of the mRNA for procollagen I and picro-sirius staining. With the operative PVA techniques presented herein, different arterial flow rates in the portal vein can be investigated. In our opinion these techniques represent an excellent animal model for studying the genesis of fibrosis and antifibrotic substances. By regulating the blood flow in the arterialised portal vein hepatic fibrosis can be reduced or even avoided. After a brief period of learning the microsurgical techniques, the surgeon can limit clamping times and achieve good results with these techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00147-004-0751-2DOI Listing

Publication Analysis

Top Keywords

hepatic fibrosis
20
portal vein
16
portal inflow
16
portal
10
arterialisation portal
8
model induction
8
induction hepatic
8
liver transplantation
8
pva techniques
8
reduction portal
8

Similar Publications

Purpose Of Review: This review assesses the outcomes of coronary interventions in patients with liver cirrhosis and coronary artery disease (CAD), focusing on the clinical challenges posed by cirrhosis-related hemodynamic and coagulopathic changes. It highlights essential considerations for managing these patients, who have an increased risk of adverse events during coronary procedures.

Recent Findings: Recent studies have shown that patients with liver cirrhosis undergoing PCI experience significantly higher mortality rates compared to non-cirrhotic patients, particularly in the context of STEMI and NSTEMI.

View Article and Find Full Text PDF

Introduction: The coexistence of gallbladder (LSG) and adenomyomatosis (ADM) is extremely uncommon presenting a novel clinical dilemma that has not been previously documented. LSG refers to a anomaly where the gallbladder is situated to the left of the round ligament deviating from its usual position. This anomaly is rare, with reported occurrences ranging between 0.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality globally due to HCC late diagnosis and limited treatment options. MiRNAs (miRNAs) emerged as potential biomarkers for various diseases, including HCC. However, the value of miRNA-101 as a serum biomarker for HCV-induced HCC has not been fully investigated.

View Article and Find Full Text PDF

Ionizable polymeric micelles (IPMs) for efficient siRNA delivery.

Nat Commun

January 2025

Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China.

Lipid nanoparticles (LNPs) are widely used for nucleic acid delivery but face challenges like limited targeting and accelerated blood clearance (ABC) effect. We design three ionizable oligomers (IOs) that, with polylactide-polyethylene glycol (PLA-PEG), form a potential siRNA delivery system, named Ionizable Polymeric Micelles (IPMs). The siRNA encapsulated IPMs escape from lysosomes upon cellular uptake, and silence the target gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!