The localization of calbindin-D28K (CB) was studied immunocytochemically in laminae I and II of the dorsal horn and in spinal ganglia in the chicken, and compared with the distribution of substance P (SP) using double immunolabeling. At the light microscopic level, CB immunoreactivity was observed most intensely in the lamina II using the avidin-biotinylated peroxidase complex (ABC) and immunofluorescence methods. At the electron microscopic level using the ABC method, CB immunoreactivity was observed in the following three neuronal elements: 1) the scalloped central terminal with many dense-cored vesicles (DCVs) in the synaptic glomerulus; 2) some vesicle-containing dendrites (VCDs) inside or outside the synaptic glomerulus; and 3) some axon terminals outside the synaptic glomerulus. The CB-immunoreactive (IR) VCDs in the synaptic glomerulus often formed reciprocal synapses with the central terminal. Strong immunoreactivity was observed at the postsynaptic membrane of CB-IR elements. Double immunofluorescence and immunolabeling methods at the electron microscopic level showed that CB and SP colocalized in the scalloped central terminal with DCVs of the synaptic glomerulus. Almost all SP-IR neurons in the spinal ganglion revealed the coexistence of CB in serial sections in the chicken. In light of previous biochemical and physiological reports, our findings suggest that CB - coexisting with SP - plays an important role in the control of pain transmission through its strong Ca(2+)-buffering action in the chicken.

Download full-text PDF

Source
http://dx.doi.org/10.1679/aohc.68.57DOI Listing

Publication Analysis

Top Keywords

synaptic glomerulus
20
microscopic level
12
immunoreactivity observed
12
central terminal
12
laminae dorsal
8
dorsal horn
8
horn spinal
8
spinal ganglia
8
ganglia chicken
8
methods electron
8

Similar Publications

Introduction: We investigated whether the cerebellum develops neuropathology that correlates with well-accepted Alzheimer's disease (AD) neuropathological markers and cognitive status.

Methods: We studied cerebellar cytoarchitecture in a cohort (N = 30) of brain donors. In a larger cohort (N = 605), we queried whether the weight of the contents of the posterior fossa (PF), which contains primarily cerebellum, correlated with dementia status.

View Article and Find Full Text PDF

The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map.

View Article and Find Full Text PDF

Experience-dependent serotonergic signaling in glia regulates targeted synapse elimination.

PLoS Biol

October 2024

Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee, United States of America.

Article Synopsis
  • Brain connectivity optimization through synapse elimination occurs during critical periods influenced by sensory experiences.
  • Serotonin signaling in glial cells is crucial for this synaptic pruning, especially related to olfactory experiences in Drosophila.
  • The study shows that serotonin production and 5-HT2A receptors in glia (not neurons) are necessary for targeted pruning, and reactivating these receptors in adult glia can mimic experience-dependent pruning in maturity.
View Article and Find Full Text PDF

Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.

View Article and Find Full Text PDF

Mapping proteomic composition of excitatory postsynaptic sites in the cerebellar cortex.

Front Mol Neurosci

May 2024

Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.

Functions of the cerebellar cortex, from motor learning to emotion and cognition, depend on the appropriate molecular composition at diverse synapse types. Glutamate receptor distributions have been partially mapped using immunogold electron microscopy. However, information is lacking on the distribution of many other components, such as Shank2, a postsynaptic scaffolding protein whose cerebellar dysfunction is associated with autism spectrum disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!