Photodynamic therapy using 5-aminolevulinic acid-induced protoporphyrin IX synthesis as a photosensitizing reagent is an encouraging modality for cancer treatment. Understanding the mechanism of tumor phototoxicity is important to provide a basis for combinatory therapy regimens. A normal cell line (UROtsa, urothelial) and two tumor cell lines (RT4, urothelial; HT29, colonic) were treated with cell line-specific LD50 doses of light after exposure to 5-aminolevulinic acid (100 microg/mL), and harvested for RNA extraction 0, 10, and 30 minutes after irradiation. The RNA was hybridized to the metg001A Affymetrix GeneChip containing 2,800 genes, focusing on cancer-related and growth regulatory targets. Comparing the gene expression profiles between the different samples, 40 genes (e.g., SOD2, LUC7A, CASP8, and DUSP1) were identified as significantly altered in comparison with the control samples, and grouped according to their gene ontology. We selected caspase-8 (CASP8) and dual specificity phosphatase 1 (DUSP1) for further validation of the array findings, and compared their expression with the expression of the immediate early gene FOS by quantitative reverse transcription-PCR. RNA expression of CASP8 stayed unchanged whereas DUSP1 RNA was up-regulated in normal and tumor cells starting 30 minutes after irradiation. In contrast, FOS RNA was found continuously up-regulated over time in all three cell lines. Induction of DUSP1 protein expression was clearly shown after 1 hour using Western blot analysis. Interestingly, no changes of caspase-8 protein expression but activation of catalytic activity was detected only in UROtsa cells starting 1 hour after photodynamic therapy, whereas no changes were seen in both tumor cell lines. According to caspase-8, the active caspase 3 fragment was found only in the normal urothelial cell line (UROtsa) 1 hour after photodynamic therapy. Combined data analysis suggests that photodynamic therapy in vitro (LD50) leads to apoptosis in UROtsa and to necrosis in the tumor cell lines, respectively. RNA expression profiling of normal and tumor cell lines following photodynamic therapy with 5-aminolevulinic acid gave insight into the major molecular mechanisms induced by photodynamic therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-04-0141 | DOI Listing |
J Mater Chem B
January 2025
Liaoning & Shenyang Key Laboratory of Functional Dye and Pigment, Shenyang University of Chemical Technology, Shenyang, China.
A pair of aza-BODIPY isomers, 1,7-di--butyl-3,5-dinaphthyl (Nap-BDP) and 1,7-dinaphthyl-3,5-di--butyl (revNap-BDP), were prepared in this study. According to the single crystal X-ray analysis, Nap-BDP exhibited an orthogonal structure. Owing to the difference in orthogonality and -Bu rotation between Nap-BDP and revNap-BDP, their spectral performances, including maximum absorption and emission, full width at half maximum, fluorescence quantum yield, photostability, singlet oxygen generation and photothermal conversion efficiency, were obviously different.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Immunotherapy, particularly immune checkpoint blockade (ICB) therapies, has revolutionized oncology. However, it encounters challenges such as inadequate drug accumulation and limited efficacy against "cold" tumors characterized by lack of T cell infiltration and immunosuppressive microenvironments. Here, a controlled antibody production and releasing nanoparticle (CAPRN) is introduced, designed to augment ICB efficacy by facilitating tumor-targeted antibody production and inducing photodynamic cell death.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.
Photodynamic therapy (PDT) holds great potential in cancer treatment, leveraging photosensitizers (PSs) to deliver targeted therapy. Fluorination can optimize the physicochemical and biological properties of PSs for better PDT performance. Here, we report some high-performance multifunctional PSs specifically designed for cancer PDT by fluorinating aza-BODIPY with perfluoro--butoxymethyl (PFBM) groups.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
Malignant tumors have been a serious threat to human health with their increasing incidence. Difficulties with conventional treatments are toxicity, drug resistance, and recurrence. For this reason, non-invasive treatment modalities such as photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), and others have received much attention.
View Article and Find Full Text PDFSmall
January 2025
The Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Xingangzhong Road 466, Guangzhou, 518037, P. R. China.
The self-assembly of hydrophobic organic phototherapeutic agents (OPTAs) with expansive planar structures into nanoparticles (NPs) represents a pivotal strategy to bolster their biocompatibility. However, the tight molecular packing within these NPs significantly influences the generation of reactive oxygen species (ROS) and the photothermal conversion efficiency (PCE), posing a substantial hurdle to elevating the efficacy of photodynamic therapy (PDT) and photothermal therapy (PTT) for such NPs. In this article, three OPTAs by donor engineering are synthesized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!