Seasonal effects in the elimination of trachoma.

Am J Trop Med Hyg

Francis I. Proctor Foundation, Department of Ophthalmology, Institute for Global Health, University of California, San Francisco 94143-0944, USA.

Published: April 2005

The World Health Organization currently recommends annual mass antibiotic treatment to eliminate the ocular chlamydia that cause blinding trachoma. Active trachoma is believed to be seasonal in many areas of the world, and the optimal season in which to treat has not as yet been established. Here we use mathematical models of disease transmission to demonstrate that ideally, treatment should be administered before the low season to have the greatest chance of locally eliminating infection.

Download full-text PDF

Source

Publication Analysis

Top Keywords

seasonal effects
4
effects elimination
4
elimination trachoma
4
trachoma health
4
health organization
4
organization currently
4
currently recommends
4
recommends annual
4
annual mass
4
mass antibiotic
4

Similar Publications

Towards healthy sleep environments: Ambient, indoor, and personal exposure to PM and its implications in children's sleep health.

Environ Res

January 2025

Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States. Electronic address:

The growing impact of climate change and escalating wildfire seasons has led to heightened ambient air pollution, potentially affecting children's sleep health. However, current epidemiological research often relies on outdoor weather data to model the environmental impacts on sleep health, potentially mischaracterizing the actual bedroom environment. To address these challenges, we conducted experiments to investigate the relationships among ambient, indoor, and personal exposure to PM concentrations and obstructive sleep apnea (OSA) in children.

View Article and Find Full Text PDF

Ocean acidification and its regulating factors in the East China Sea off the Yangtze River estuary.

Mar Environ Res

January 2025

Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.

This study examines the seasonal variations in carbonate system parameters in the East China Sea (ECS) off the Yangtze River estuary (YRE) and analyzes the contributions of anthropogenic CO₂ and eutrophication to acidification. Carbonate parameters data were collected during summer 2019 and combined winter 2011. During winter, acidification is primarily driven by rising atmospheric CO₂, with minimal impact from biological processes.

View Article and Find Full Text PDF

Over the last ten years, the US Centers for Disease Control and Prevention (CDC) has organized an annual influenza forecasting challenge with the motivation that accurate probabilistic forecasts could improve situational awareness and yield more effective public health actions. Starting with the 2021/22 influenza season, the forecasting targets for this challenge have been based on hospital admissions reported in the CDC's National Healthcare Safety Network (NHSN) surveillance system. Reporting of influenza hospital admissions through NHSN began within the last few years, and as such only a limited amount of historical data are available for this target signal.

View Article and Find Full Text PDF

Inland river runoff variability is pivotal for maintaining regional ecological stability. Daily flow forecasting in arid regions is crucial in understanding water body ecological processes and promoting healthy river ecology. Precise daily runoff forecasting serves as a cornerstone for ecological evaluation, management, and decision-making.

View Article and Find Full Text PDF

The source-receptor relationship of atmospheric mercury is a critical environmental concern. However, comprehensive evaluations of mercury pollution based on spatially resolved and time-averaged data have not yet been conducted in Korea. In this study, the spatio-temporal variations of total gaseous mercury (TGM) and mercury isotopes were examined using passive air samplers at 30 sites in Ulsan over one year.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!