Foamy viruses (FV) are unusual among retroviruses since they require both Gag and Env structural proteins for particle egress. Recently significant progress has been made towards the mechanistic understanding of the viral release process, in particular that of retroviruses, and the viral domains and cellular pathways involved. However little is currently known about domains of FV structural proteins and cellular proteins engaged in this process. By mutational analysis of sequence motifs in prototype FV (PFV) Gag, bearing homology to known late assembly (L) domains, a PSAP motif with L domain function that was functionally interchangeable by heterologous L domains was identified. In contrast the inactivation of a PPPI motif had no significant influence on PFV particle release, although mutant viral particles displayed reduced infectivity. Similarly mutation of an evolutionary conserved YXXL motif revealed no classical L-domain function but resulted in release of noninfectious viruslike particles. Biochemical and electron microscopy analysis demonstrated that these mutant particles incorporated all viral structural proteins but contained aberrantly capsid structures, suggesting a role in capsid assembly for this PFV Gag sequence motif. In line with the mutational analysis, overexpression of dominant negative (DN) mutants and wild-type TSG101 but not the DN mutant of AIP-1/ALIX reduced PFV particle release and infectivity. Furthermore, DN mutants of Vps4A, Vps4B, and CHMP3 inhibited PFV egress and infectivity. Taken together these results demonstrate that PFV, like other viruses, requires components of the vacuolar protein sorting (VPS) machinery for egress and enters the VPS pathway through interaction with TSG101.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1082757PMC
http://dx.doi.org/10.1128/JVI.79.9.5466-5476.2005DOI Listing

Publication Analysis

Top Keywords

structural proteins
12
late assembly
8
particle egress
8
egress infectivity
8
mutational analysis
8
pfv gag
8
pfv particle
8
particle release
8
pfv
6
characterization prototype
4

Similar Publications

Masquelet technique combined with concentrated growth factors for the reconstruction of rabbit mandibular marginal bone defect.

Clin Oral Investig

January 2025

Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, 350002, China.

Objective: Both the Masquelet technique (MT) and concentrated growth factors (CGF) reduce early graft loss and improve bone regeneration. This study aims to explore the efficacy of combining MT with CGF for mandibular defect repair by characterizing the induced membrane and assessing in vivo osteogenesis.

Materials And Methods: Three experimental groups were compared: negative control (NC), MT, and Masquelet combined with CGF (MTC).

View Article and Find Full Text PDF

Purpose: Therapeutic monoclonal antibodies (mAbs) are prone to degradation via aggregation and fragmentation. In this study, forced degradation of trastuzumab (TmAb) was explored in saline and in-vitro models having HO and exposed to UV light (case study 1) both bleomycin (BML) formulation and ferrous ions (Fe) (case study 2) and sodium hypochlorite (NaOCl) (case study 3).

Methods: Size exclusion chromatography, dynamic light scattering, spectroscopic analysis, and fluorescence microscope image processing was carried out for characterizing TmAb degradation.

View Article and Find Full Text PDF

The C3 protein is the central molecule within the complement system and undergoes proteolytic activation to C3b in the presence of pathogens. Pattern-independent activation of C3 also occurs via hydrolysis, resulting in C3(HO), but the structural details of C3 hydrolysis remain elusive. Here we show that the conformation of the C3(HO) analog, C3MA, is indistinguishable from C3b.

View Article and Find Full Text PDF

Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo).

Genes Genomics

January 2025

Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Background: TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done.

Objective: The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions.

View Article and Find Full Text PDF

Plant cross-fertilization for production of dual-specific antibodies targeting both Ebola virus-like particles and HER2 protein in F plants.

Genes Genomics

January 2025

Department of Medicine, BioSystems Design Lab, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Korea.

Background: This study explores the cross-fertilization of transgenic tobacco plants to produce dual-specific monoclonal antibodies (mAbs) targeting Ebola virus-like particles and HER2 proteins. We generated F plants by hybridizing individual transgenic lines expressing the anti-HER2 breast cancer VHH mAb (HV) and the H-13F6 human anti-Ebola large single chain mAb (EL).

Objective: Hybridizing transgenic plants to express dual-antibodies between different structures VHH and LSCK indicate the potential of transgenic plants as a cost-effective and scalable production system for dual targeting mAbs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!