We have developed an Entamoeba histolytica genomic DNA microarray and used it to develop a transcriptional profile of 1,971 E. histolytica (HM-1:IMSS) genes. The arrays accurately detected message abundance and 31-47% of amebic genes were expressed under standard tissue culture conditions (levels detectable by Northern blot analysis or RT-PCR respectively). Genes expressed at high levels ( approximately 2% of total) included actin (8.m00351), and ribosomal genes (20.m00312). Moderately expressed genes ( approximately 14% of total) included cysteine proteinase (191.m00117), profilin (156.m00098), and an Argonaute family member (11.m00378). Genes with low-level expression ( approximately 15% of total) included Ariel1 (160.m00087). Genes with very low expression ( approximately 16% of total) and those not expressed ( approximately 52% of total) included encystation-specific genes such as Jacob cyst wall glycoprotein (33.m00261), chitin synthase (3.m00544), and chitinase (22.m00311). Transcriptional modulation could be detected using the arrays with 17% of genes upregulated at least two-fold in response to heat shock. These included heat shock proteins (119.m00119 and 279.m00091), cyst wall glycoprotein Jacob (33.m00261), and ubiquitin-associated proteins (16.m00343; 195.m00092). Using Caco-2 cells to model the host-parasite interaction, we verified that host cell killing was dependent on live ameba. However, surprisingly these events did not appear to induce major transcriptional changes in the parasites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpara.2005.02.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!