Embryonic stem (ES) cells proliferate and maintain their pluripotency for over 1 year in vitro and may therefore provide a sufficient source for cell therapies. However, most of the previously reported methods for obtaining a source for cell therapies have not been simple. We describe here a novel method for induction of neurospheres from mouse ES cells by coculturing on PA6 cells instead of the formation of embryoid bodies. The ES cells cocultured with the PA6 stromal cell line for at least 3 days were capable of differentiating into spheres. The cells in the spheres were all green fluorescent protein (GFP) positive, showing that they were derived from GFP-expressing D3-ES cells. The spheres contained nestin-positive cells. The number of spheres increased when they were cocultured with PA6 for a longer period. Sphere formation was observed even after 10 mechanical dissociations and subculturings, showing its self-renewal ability. The cells differentiated into microtubule-associated protein-2 (MAP2)-positive neuronal cells and glial fibrillary acidic protein (GFAP)-positive glial cells. gamma-Aminobutyric acid-positive cells and tyrosine hydroxylase-positive cells were also observed in the spheres. The percentages of the MAP2- or GFAP-positive cells in the sphere changed according to the period of coculture on PA6 cells. At an early stage of coculture, more neurons were generated and, at a later period, more glial cells were generated. These results suggested that neurosphere could be generated from ES cells by coculturing with PA6, and that these cells resembled neural stem cells derived from mouse fetal brain tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.20469DOI Listing

Publication Analysis

Top Keywords

cells
20
stem cells
12
pa6 cells
12
method induction
8
induction neurospheres
8
neurospheres mouse
8
embryonic stem
8
coculture pa6
8
pa6 stromal
8
source cell
8

Similar Publications

T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.

View Article and Find Full Text PDF

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Oocyte/zygote/embryo maturation arrest: a clinical study expanding the phenotype of NOBOX variants.

J Assist Reprod Genet

January 2025

Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium.

Purpose: Primary ovarian insufficiency (POI) is an important cause of female infertility, stemming from follicle dysfunction or premature oocyte depletion. Pathogenic variants in genes such as NOBOX, GDF9, BMP15, and FSHR have been linked to POI. NOBOX, a transcription factor expressed in oocytes and granulosa cells, plays a pivotal role in folliculogenesis.

View Article and Find Full Text PDF

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!