Polarized light out-coupling from lightguides for LCDs.

Chem Rec

Eindhoven University of Technology, Faculty of Chemical Engineering and Chemistry, PO Box 513, 5600 MB Eindhoven, The Netherlands.

Published: August 2005

New designs of lightguide systems, which emit linear polarized light with a high efficiency for transmissive and transflective LCD applications, are presented. These systems are equipped with nano- and/or micro-structured films or coatings, which emit highly collimated or diffuse linearly polarized light with a high efficiency. The films are based on polarization-selective scattering, reflection, or diffraction of light and their properties can be tuned to a large extent dependent on their envisioned application. For instance, edge-lit lightguide systems are discussed, which combine a range of desirable features such as a high transparency in direct view, a direct emission of light at normal angles to the plane of the lightguide, and a purely unidirectional out-coupling of light towards the LCD-side.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.20034DOI Listing

Publication Analysis

Top Keywords

polarized light
12
lightguide systems
8
light high
8
high efficiency
8
light
5
light out-coupling
4
out-coupling lightguides
4
lightguides lcds
4
lcds designs
4
designs lightguide
4

Similar Publications

Red-shifted optical absorption induced by donor-acceptor-donor π-extended dibenzalacetone derivatives.

RSC Adv

January 2025

Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil

Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.

View Article and Find Full Text PDF

Broadband and large surface enhancements of the local electric field enabled by cross-etched hyperbolic metamaterials.

Nanoscale

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.

Hyperbolic metamaterials (HMMs) have recently attracted significant research attention due to their hyperbolic wavevector iso-frequency contour, which leads to substantial local electric field (EF) enhancements that benefit optical processes, such as the nonlinear generation, quantum science, biomedical sensing, and more. However, three main challenges hinder their practical implementation: the difficulty in exciting their resonant modes using free-space incidence, the weak enhancement of surface EF, and the narrow spectral range of EF enhancements. Herein, we proposed cross-etched HMMs (CeHMMs) as a novel type of HMM, addressing these issues.

View Article and Find Full Text PDF

Nucleation-Controlled Crystallization of Chiral 2D Perovskite Single Crystal Thin Films for High-Sensitivity Circularly Polarized Light Detection.

Adv Mater

January 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

2D Dion-Jacobson (DJ) chiral perovskite materials exhibit significant promise for developing high-performance circularly polarized light (CPL) photodetectors. However, the inherently thick nature of DJ-phase 2D perovskite single crystal limits their ability to differentiate CPL photons with the two opposite polarization states. In addition, the growth of DJ-phase perovskite single crystal thin films (SCTFs) has proven challenging due to the strong interlayer electronic coupling.

View Article and Find Full Text PDF

Crystal Structural Editing: Novel Biaxial MgTeO Crystal as Zero-Order Waveplates.

Adv Mater

January 2025

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China.

Waveplates are important optical components to control the polarization of light. Currently, they are often fabricated from uniaxial crystals, and there is no report about waveplates based on the biaxial crystals. In this work, a novel biaxial crystal MgTeO with a structure constructed by 0D TeO groups is designed and grown as waveplate materials for the first time.

View Article and Find Full Text PDF

Flat Band Generation Through Interlayer Geometric Frustration in Intercalated Transition Metal Dichalcogenides.

Small

January 2025

Institute for Quantum Computing and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L3G1, Canada.

Electronic flat bands can lead to rich many-body quantum phases by quenching the electron's kinetic energy and enhancing many-body correlation. The reduced bandwidth can be realized by either destructive quantum interference in frustrated lattices, or by generating heavy band folding with avoided band crossing in Moiré superlattices. Here a general approach is proposed to introduce flat bands into widely studied transition metal dichalcogenide (TMD) materials by dilute intercalation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!