New designs of lightguide systems, which emit linear polarized light with a high efficiency for transmissive and transflective LCD applications, are presented. These systems are equipped with nano- and/or micro-structured films or coatings, which emit highly collimated or diffuse linearly polarized light with a high efficiency. The films are based on polarization-selective scattering, reflection, or diffraction of light and their properties can be tuned to a large extent dependent on their envisioned application. For instance, edge-lit lightguide systems are discussed, which combine a range of desirable features such as a high transparency in direct view, a direct emission of light at normal angles to the plane of the lightguide, and a purely unidirectional out-coupling of light towards the LCD-side.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.20034 | DOI Listing |
RSC Adv
January 2025
Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido (UFERSA) CEP 59625-900 Mossoró RN Brazil
Chalcones demonstrate significant absorption in the near ultraviolet-visible spectrum, making them valuable for applications such as solar cells, light-emitting diodes, and nonlinear optics. This study investigates four dibenzalacetone derivatives (DBAd), DBA, DBC, DEP, and DMA, examining the impact of electron-donating and electron-withdrawing groups and conjugation elongation on their electronic structure in solvents of varying polarities. Using the Polarizable Continuum Model (PCM) and time-dependent density functional theory (TD-DFT), we characterized the excited states of these compounds.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China.
Hyperbolic metamaterials (HMMs) have recently attracted significant research attention due to their hyperbolic wavevector iso-frequency contour, which leads to substantial local electric field (EF) enhancements that benefit optical processes, such as the nonlinear generation, quantum science, biomedical sensing, and more. However, three main challenges hinder their practical implementation: the difficulty in exciting their resonant modes using free-space incidence, the weak enhancement of surface EF, and the narrow spectral range of EF enhancements. Herein, we proposed cross-etched HMMs (CeHMMs) as a novel type of HMM, addressing these issues.
View Article and Find Full Text PDFAdv Mater
January 2025
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
2D Dion-Jacobson (DJ) chiral perovskite materials exhibit significant promise for developing high-performance circularly polarized light (CPL) photodetectors. However, the inherently thick nature of DJ-phase 2D perovskite single crystal limits their ability to differentiate CPL photons with the two opposite polarization states. In addition, the growth of DJ-phase perovskite single crystal thin films (SCTFs) has proven challenging due to the strong interlayer electronic coupling.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China.
Waveplates are important optical components to control the polarization of light. Currently, they are often fabricated from uniaxial crystals, and there is no report about waveplates based on the biaxial crystals. In this work, a novel biaxial crystal MgTeO with a structure constructed by 0D TeO groups is designed and grown as waveplate materials for the first time.
View Article and Find Full Text PDFSmall
January 2025
Institute for Quantum Computing and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L3G1, Canada.
Electronic flat bands can lead to rich many-body quantum phases by quenching the electron's kinetic energy and enhancing many-body correlation. The reduced bandwidth can be realized by either destructive quantum interference in frustrated lattices, or by generating heavy band folding with avoided band crossing in Moiré superlattices. Here a general approach is proposed to introduce flat bands into widely studied transition metal dichalcogenide (TMD) materials by dilute intercalation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!