The majority (75%) of human breast cancers express estrogen receptor (ER). Although ER-positive tumors usually respond to antiestrogen therapies, 30% of them do not. It is not known what controls the ER status of breast cancers or their responsiveness to antihormone interventions. In this report, we document that transgenic (TG) expression of Wnt-1 in mice induces ER-positive tumors. Loss of Pten or gain of Ras mutations during the evolution of tumors in Wnt-1 TG mice has no effect on the expression of ER, but overexpression of Neu or loss of p53 leads to ER-negative tumors. Thus, our results provide compelling evidence that expression of ER in breast cancer may be influenced by specific genetic changes that promote cancer progression. These findings constitute a first step to explore the molecular mechanisms leading to ER-positive or ER-negative mammary tumors. In addition, we find that ER-positive tumors arising in Wnt-1 TG mice are refractory to both ovariectomy and the ER antagonist tamoxifen, but lose ER expression with tamoxifen, suggesting that antiestrogen selects for ER-negative tumor cells and that the ER-positive cell fraction is dispensable for growth of these tumors. This is a first report of a mouse model of antiestrogen-resistant ER-positive breast cancers, and could provide a powerful tool to study the molecular mechanisms that control antiestrogen resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.onc.1208597DOI Listing

Publication Analysis

Top Keywords

breast cancers
12
er-positive tumors
12
wnt-1 mice
12
estrogen receptor
8
tumors
8
mammary tumors
8
tumors wnt-1
8
molecular mechanisms
8
er-positive
6
receptor positivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!