Somatic stem cells cycle slowly or remain quiescent until required for tissue repair and maintenance. Upon muscle injury, stem cells that lie between the muscle fiber and basal lamina (satellite cells) are activated, proliferate, and eventually differentiate to repair the damaged muscle. Satellite cells in healthy muscle are quiescent, do not express MyoD family transcription factors or cell cycle regulatory genes and are insulated from the surrounding environment. Here, we report that the p38alpha/beta family of mitogen-activated protein kinases (MAPKs) reversibly regulates the quiescent state of the skeletal muscle satellite cell. Inhibition of p38alpha/beta MAPKs (a) promotes exit from the cell cycle, (b) prevents differentiation, and (c) insulates the cell from most external stimuli allowing the satellite cell to maintain a quiescent state. Activation of satellite cells and p38alpha/beta MAPKs occurs concomitantly, providing further support that these MAPKs function as a molecular switch for satellite cell activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2171902 | PMC |
http://dx.doi.org/10.1083/jcb.200408066 | DOI Listing |
Front Cell Dev Biol
January 2025
Department of Health Promotion Sciences, Graduated School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan.
Cell therapy of skeletal muscles is a promising approach for the prevention of muscular diseases and age-related muscle atrophy. However, cell transplantation to treat muscle atrophy that does not involve disease, such as sarcopenia, is considered impossible because externally injected cells rarely engraft into non-injured muscle tissue. Additionally, skeletal muscle-specific somatic stem cells, called satellite cells, lose their ability to adhere to tissue after being cultured and transforming into myoblasts.
View Article and Find Full Text PDFJCI Insight
January 2025
Institute of Muscle Biology and Cachexia, University of Houston College of Pharmacy, Houston, United States of America.
Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) were increased in satellite cells after muscle injury.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.
Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.
Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).
Res Vet Sci
January 2025
Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy.
A Roman goose (Anser anser domesticus) was presented with a large mass on the left lateral side of the neck with a smaller satellite mass on the right. Utilizing radiography, blood tests, and histological and immunohistochemical investigations, a diagnosis of cutaneous T-cell lymphoma associated with hypercalcemia of malignancy was established. The involvement of oncogenic viruses was ruled out through PCR and RT-PCRs.
View Article and Find Full Text PDFToxicon
January 2025
National Research Council of Italy, Institute of Biochemistry and Cell Biology, 00015, Monterotondo, RM, Italy. Electronic address:
Botulinum neurotoxin type A (BoNT/A) has expanded its therapeutic uses beyond neuromuscular disorders to include treatments for various pain syndromes and neurological conditions. Originally recognized for blocking acetylcholine release at neuromuscular junctions, BoNT/A's effects extend to both peripheral and central nervous systems. Its ability to undergo retrograde transport allows BoNT/A to modulate synaptic transmission and reduce pain centrally, influencing neurotransmitter systems beyond muscle control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!