Recently, we reported that the repeated activation of cyclic-AMP-dependent protein kinase (PKA) in the rat hippocampus under tissue culture conditions induced the enhancement of excitatory postsynaptic potential (EPSP), which lasted more than 2 weeks and was accompanied by the formation of morphologically identifiable synapses. Here we examined whether an equivalent synapse formation is induced in dissociated cell cultures of rat hippocampal neurons. Brief (15-min) application of Sp-cAMPS (a membrane-permeable analog of cyclic AMP) induced an increase in the number of synaptic sites (identified by the apposition of immunocytochemically labeled pre- and postsynaptic structures). There were two types of increase: a short-lasting one that lasted less than 24 h after a single application of Sp-cAMPS, and a long-lasting one that lasted more than 2 weeks after repeated applications. The long-lasting increase in synaptic sites was dependent on the time and interval of application and was suppressed by Rp-cAMPS (a PKA inhibitor). The synapses were judged to be active based on the endocytosis of FM1-43, a fluorescent dye. Electron microscopy confirmed the increase in the number of synaptic ultrastructures. The present results show that the synaptogenesis induced by repeated PKA activation is reproducible in a neuronal network that is reconstituted under dissociated cell culture conditions. This experimental system, together with the synaptogenesis in the slice culture system described previously, serves as a good in vitro model for the analysis of the process of conversion from short-lasting plasticity (lasting for hours) into a long-lasting one (lasting for days-weeks).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2005.01.102 | DOI Listing |
Trends Biochem Sci
January 2025
Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. Electronic address:
The brain is an exceptionally lipid-rich organ with a very complex lipid composition. Lipids are central in several neuronal processes, including membrane formation and fusion, myelin packing, and lipid-mediated signal transmission. Lipid diversity is associated with the evolution of higher cognitive abilities in primates, is affected by neuronal activity, and is instrumental for synaptic plasticity, illustrating that lipids are not static components of synaptic membranes.
View Article and Find Full Text PDFeNeuro
January 2025
University of Rochester Medical Center, Department of Neuroscience,
A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210
Pyramidal cells (PCs) in CA1 hippocampus can be classified by their radial position as deep or superficial and organize into subtype-specific circuits necessary for differential information processing. Specifically, superficial PCs receive fewer inhibitory synapses from parvalbumin (PV)-expressing interneurons than deep PCs, resulting in weaker feedforward inhibition of input from CA3 Schaffer collaterals. Using mice, we investigated mechanisms underlying CA1 PC differentiation and the development of this inhibitory circuit motif.
View Article and Find Full Text PDFJ Neurosci
January 2025
Institute of Neuroimmunology, Slovak Academy of Science, 84510 Bratislava, Slovakia.
Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Michigan, Ann Arbor, MI, USA.
Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide. The recent announcement that lecanemab, a monoclonal antibody targeting amyloid-b, can slow down cognitive decline in AD is a great step forward in the battle against the disease. However, the modest success achieved in the clinical trial speak to the need for developing additional pharmaceutical approaches to target other key features of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!