To gain information concerning cell functions and activities during sunflower embryogenesis, an expressed sequence tag (EST) approach was used to analyse gene expression in the early stages of sunflower embryos development. Confocal microscopy observations of whole-mounted embryos allowed us to identify precisely the major steps of the zygotic embryonic development. A time-course analysis was then employed to collect the embryonic material. Three cDNA libraries were constructed from microdissected embryos, and three other cDNA libraries were created using a classical day after pollination schedule. A total of 7106 ESTs were produced and assembled. The total number of putative different genes represents about 43.1 (3064 tentative contigs and singlets) of the analysed sequences. The unigenes that showed similarity to proteins with known or predicted functions (50.3) were classified into 15 different functional categories. The functional profiles were found to be quite similar for all studied embryo stages but statistical analysis revealed that successive and coordinate sets of genes are expressed at each embryonic stage. The analysis allowed us to identify abundant and differentially expressed genes at the early stages of embryos development as well as some putatively interesting genes, showing strong similarities with genes playing key roles in plant and animal embryogenesis. The data presented in this study not only provide a first global overview of the genes expression profile during sunflower embryogenesis but also represent an original and valuable tool for developmental genomics studies on exalbuminous dicots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11103-004-7532-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!