Forskolin-induced Ca(2+) signals were examined in isolated rat olfactory receptor neurons (ORNs) using a Ca(2+) indicator, fura-2. In the soma of the ORNs, forskolin caused an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that was enhanced by a phosphodiesterase (PDE) 1 inhibitor, 8-methoxymethyl-3-isobutyl-1-methyl-xanthine, but not a PDE4 inhibitor, rolipram. Forskolin-induced Ca(2+) signals were abolished with the removal of extracellular Ca(2+) and un-affected by treatment with thapsigargin or caffeine plus ryanodine. Niflumic acid, a Ca(2+)-activated Cl(-) channel inhibitor, or nifedipine, an L-type Ca(2+) channel inhibitor, slowed the initial rate of the increase in [Ca(2+)](i) in response to forskolin. Nifedipine did not affect the increase in [Ca(2+)](i) that was slowed by niflumic acid. In Ca(2+) measurements with a confocal microscope and a calcium indicator, Fluo-4, the onset of the response to forskolin in the knob region occurred simultaneously or earlier, but not later, than that in the soma. It is suggested that the forskolin-induced Ca(2+) signals are due to Ca(2+) influx, but not the release of Ca(2+) from Ca(2+) stores, and that the initial rapid increase in [Ca(2+)](i) is associated with the activation of the voltage-dependent Ca(2+) channels in rat ORNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1254/jphs.fp0040883 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!