A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protein structural deformation induced lifetime shortening of photosynthetic bacteria light-harvesting complex LH2 excited state. | LitMetric

AI Article Synopsis

  • Researchers immobilized the photosynthetic bacterial light-harvesting antenna complex LH2 onto TiO(2) nanoparticles to study its properties.
  • They found that the excited-state lifetime of a specific part of LH2 (B850) decreased when attached to TiO(2), but ruled out the possibility of this being caused by electron transfer.
  • The observed changes in LH2's properties were attributed to structural deformation caused by interfacial interactions, explained through an elliptical exciton model.

Article Abstract

Photosynthetic bacterial light-harvesting antenna complex LH2 was immobilized on the surface of TiO(2) nanoparticles in the colloidal solution. The LH2/TiO(2) assembly was investigated by the time-resolved spectroscopic methods. The excited-state lifetimes for carotenoid-containing and carotenoidless LH2 have been measured, showing a decrease in the excited-state lifetime of B850 when LH2 was immobilized on TiO(2). The possibility that the decrease of the LH2 excited-state lifetime being caused by an interfacial electron transfer reaction between B850 and the TiO(2) nanoparticle was precluded experimentally. We proposed that the observed change in the photophysical properties of LH2 when assembled onto TiO(2) nanoparticles is arising from the interfacial-interaction-induced structural deformation of the LH2 complex deviating from an ellipse of less eccentric to a more eccentric ellipse, and the observed phenomenon can be accounted by an elliptical exciton model. Experiment by using photoinactive SiO(2) nanoparticle in place of TiO(2) and core complex LH1 instead of LH2 provide further evidence to the proposed mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1305656PMC
http://dx.doi.org/10.1529/biophysj.104.053868DOI Listing

Publication Analysis

Top Keywords

structural deformation
8
lh2
8
complex lh2
8
lh2 immobilized
8
tio2 nanoparticles
8
excited-state lifetime
8
tio2
5
protein structural
4
deformation induced
4
induced lifetime
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!