Vibrational analysis of the two conformers of furfural and 2-chlorobenzaldehyde has been carried out on the basis of their IR and Raman spectra measured in isotropic and anisotropic (nematic liquid crystalline) solvent. The average orientation of the individual conformers in the nematic solvent has been determined by means of a recently developed approach for low symmetry planar molecules using DFT calculations of the vibrational transitions moments. The complex shape of the carbonyl band additionally split into several components is interpreted as an effect of Fermi resonance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2004.11.043DOI Listing

Publication Analysis

Top Keywords

conformers nematic
8
furfural 2-chlorobenzaldehyde
8
vibrational spectra
4
spectra partially
4
partially oriented
4
oriented molecules
4
molecules conformers
4
nematic isotropic
4
isotropic solutions
4
solutions furfural
4

Similar Publications

The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.

View Article and Find Full Text PDF

A Self-Assembled Periodic Nanoporous Framework in Aqueous Solutions of the DNA Tetramer GCCG.

ACS Nano

December 2024

Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, Colorado 80309-0390, United States.

Article Synopsis
  • Researchers have found that high concentrations of the DNA 4-base oligomer GCCG can lead to the spontaneous formation of three-dimensional (3D) structures in aqueous solutions, expanding the field of DNA nanoscience.
  • The GCCG oligomer forms double helices that create ordered arrangements resembling liquid crystal phases, allowing for complex structural organization even at high concentrations.
  • At concentrations over 400 mg/mL, a new 3D body-centered cubic lattice framework develops, which could have practical applications in nanoscale templating and selection due to its unique properties and stability.
View Article and Find Full Text PDF

Dynamics of polymers in coarse-grained nematic solvents.

Soft Matter

January 2025

School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK.

Polymers are a primary building block in many biomaterials, often interacting with anisotropic backgrounds. While previous studies have considered polymer dynamics within nematic solvents, rarely are the effects of anisotropic viscosity and polymer elongation differentiated. Here, we study polymers embedded in nematic liquid crystals with isotropic viscosity numerical simulations to explicitly investigate the effect of nematicity on macromolecular conformation and how conformation alone can produce anisotropic dynamics.

View Article and Find Full Text PDF

Spool-Nematic Ordering of dsDNA and dsRNA under Confinement.

Phys Rev Lett

October 2024

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.

The ability of double-stranded DNA or RNA to locally melt and form kinks leads to strong nonlinear elasticity effects that qualitatively affect their packing in confined spaces. Using analytical theory and numerical simulation we show that kink formation entails a mixed spool-nematic ordering of double-stranded DNA or RNA in spherical capsids, consisting of an outer spool domain and an inner, twisted nematic domain. These findings explain the experimentally observed nematic domains in viral capsids and imply that nonlinear elasticity must be considered to predict the configurations and dynamics of double-stranded genomes in viruses, bacterial nucleoids or gene-delivery vehicles.

View Article and Find Full Text PDF

Density-Nematic Coupling in Isotropic Solution of DNA: Multiscale Model.

Macromol Rapid Commun

December 2024

Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, SI-1001, Slovenia.

Monte Carlo simulations of isotropic solutions of double-stranded DNA (deoxyribonucleic acid) are performed using the well-established oxDNA model. By comparing the fluctuation amplitudes with theoretical predictions, the parameters of a generic macroscopic model of an isotropic linear polymer solution/melt are determined. A multiscale continuum field model is thus obtained, corresponding to the full specificity of the isotropic phase of double-stranded DNA in the usual B-form as perceived at the macroscopic level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!