Calmodulin is known to be a target for oxidation, which leads to conversion of methionine residues to methionine sulfoxides. Previously, we reported that both methionine sulfoxide reductases MsrA and MsrB were able to reduce methionine sulfoxide residues in oxidized calmodulin. In the present study, we have made use of the interaction between calmodulin and RS20, a peptide model for calmodulin targets, to probe the structural consequences of oxidation and mode of repair both by MsrA and MsrB. Isothermal titration calorimetry and differential scanning calorimetry showed that oxidized calmodulin interacts with RS20 via its C-terminal domain only, resulting in a non-productive complex. As shown by spectrofluorometry, oxidized calmodulin treated with MsrA exhibited native binding affinity for RS20. In contrast, MsrB-treatment of oxidized calmodulin resulted in 10-fold reduced affinity. Mass spectrometry revealed that the sulfoxide derivative of methionine residue 124 was differentially repaired by MsrA and MsrB. This provided a basis for rationalizing the difference in binding affinities of oxidized calmodulin reported above, since Met124 residue had been shown to be critical for interaction with some targets. This study provides the first evidence that in an oxidized polypeptide chain MetSO residues might be differentially repaired by the two Msr enzymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2004.11.020 | DOI Listing |
is a species closely linked to human health. This study investigated the acaricidal efficacy of methanol extracts from 18 traditional Chinese medicinal plants against . The extract from DC.
View Article and Find Full Text PDFRen Fail
December 2025
Department of Endocrinology, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
Background: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Sodium-glucose cotransporter protein 2 inhibitors (SGLT2i) are antihyperglycemic agents that provide additional renal-protective effects in patients with DKD, independent of their glucose-lowering effects. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFNitric Oxide
December 2024
Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China. Electronic address:
Background: Osteocytes are crucial for detecting mechanical stimuli and translating them into biochemical responses within the bone. The primary cilium, a cellular 'antenna,' plays a vital role in this process. However, there is a lack of direct correlation between cilium length changes and osteocyte mechanosensitivity changes.
View Article and Find Full Text PDFExp Neurol
December 2024
Department of Neurology, Henry Ford Health System, Detroit, MI 48202, United States of America. Electronic address:
Dendritic and axonal plasticity, which mediates neurobiological recovery after a stroke, critically depends on the mitochondrial function of neurons. To investigate, in vivo, neuronal mitochondrial function at the stroke recovery stage, we employed Mito-tag mice combined with cerebral cortical infection of AAV9 produced from plasmids carrying Cre-recombinase controlled by two neuronal promoters, synapsin-I (SYN1) and calmodulin-kinase IIa to induce expression of a hemagglutinin (HA)-tagged enhanced green fluorescence protein (EGFP) that localizes to mitochondrial outer membranes of SYN1 positive (SYN) and CaMKIIa positive (CaMKIIa) neurons. These mice were then subjected to permanent middle cerebral artery occlusion (MCAO) and sacrificed 14 days post stroke.
View Article and Find Full Text PDFPlant Physiol
December 2024
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
Soil salinization threatens global crop production. Here, we report that a receptor-like cytoplasmic kinase, CALMODULIN-BINDING RECEPTOR-LIKE CYTOPLASMIC KINASE 3 (CRCK3), plays an essential role in plant salt tolerance via CATALASE 2 (CAT2), a hydrogen peroxide (H2O2)-scavenging enzyme in Arabidopsis (Arabidopsis thaliana). CRCK3 was induced by salt stress, and its knockout mutant displayed a salt-sensitive phenotype compared with wild-type plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!