The laminar distribution of several distinct populations of neurofilament protein containing neurons has been used as a criterion for the delineation of cortical areas in hamsters. SMI-32 is a monoclonal antibody that recognizes a non-phosphorylated epitope on the medium- and high-molecular weight subunits of neurofilament proteins. As in carnivores and primates, SMI-32 immunoreactivity in the hamster neocortex was present in cell bodies, proximal dendrites and axons of some medium and large pyramidal neurons located in cortical layers III, V and VI. A small population of labeled multipolar cells was also found in layer IV. Neurofilament protein immunoreactive neurons were found throughout isocortical areas. Very few labeled cells were encountered in supplemental motor area, insular cortex, medial portion of associative visual cortex and in parietal association cortex. Our data indicate that SMI-32 immunoreactive cells can be efficiently used to trace boundaries between neocortical areas in the hamster's brain. The regional distribution SMI-32 immunoreactivity in the hamster cortex corresponds quite closely with cortical areas as defined by their cytoarchitecture and myeloarchitecture. The primary sensory cortical areas contain the most intense of SMI-32 immunoreactivity and are also those with the highest density of myelinated axons. Very low SMI-32 immunoreactivity was found in orbital, insular, perirhinal, cingulate and infralimbic cortices, which are also poor in myelinated axons. This supports the association between SMI-32 immunoreactivity and myelin contents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchemneu.2005.01.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!