Effect of caffeine on oxidation susceptibility of human plasma low density lipoproteins.

Clin Chim Acta

Department of Physical Chemistry, Ruder Bosković Institute, Bijenicka 54, HR-10000 Zagreb, Croatia.

Published: May 2005

The effect of caffeine on oxidation susceptibility of low density lipoproteins (LDL) has been studied. LDL oxidation was induced by copper ions and an azo initiator. The conjugated dienes formation was followed spectrophotometrically and indicated the LDL oxidation status. Changes in LDL protein moiety during the lag phase, studied only in the experiments of copper induced oxidation, were followed using the intrinsic fluorescence spectroscopy. The decay of LDL fluorescence signal during initial stages of oxidation was slower in the presence of caffeine. Supported by the fluorescence quenching and polarization measurements, these results may indicate the protective role of caffeine against LDL oxidation in vitro. The results also indicate that the production of conjugated dienes in the propagation and decomposition phase of LDL oxidation is lower in the presence of caffeine, regardless of the initiation mechanism. These findings may have implications for the effect of caffeine on LDL in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cccn.2004.12.001DOI Listing

Publication Analysis

Top Keywords

ldl oxidation
16
caffeine oxidation
8
oxidation susceptibility
8
low density
8
density lipoproteins
8
ldl
8
conjugated dienes
8
presence caffeine
8
caffeine ldl
8
oxidation
7

Similar Publications

The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.

View Article and Find Full Text PDF

Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti-leukemic, and anti-inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low-density lipoprotein uptake in macrophages, Nef-induced CD4 cell surface downregulation, and mechanisms of endocytosis.

View Article and Find Full Text PDF

A pilot study was conducted to investigate the effect of four weeks of creatine monohydrate (CrM) on vascular endothelial function in older adults. In a double-blind, randomized crossover trial, twelve sedentary, healthy older adults were allocated to either the CrM or placebo (PL) group for four weeks, at a dose of 4 × 5 g/day for 5 days, followed by 1 × 5 g/day for 23 days. Macrovascular function (flow-mediated dilation [FMD%], normalized FMD%, brachial-ankle pulse wave velocity [baPWV], pulse wave analysis [PWA]), microvascular function (microvascular reperfusion rate [% StO/sec]), and biomarkers of vascular function (tetrahydrobiopterin [BH], malondialdehyde [MDA], oxidized low-density lipoprotein [oxLDL], glucose, lipids) were assessed pre- and post-supplementation with a four-week washout period.

View Article and Find Full Text PDF

Coenzyme Q10 (CoQ10) plays a crucial role in facilitating electron transport during oxidative phosphorylation, thus contributing to cellular energy production. Statin treatment causes a decrease in CoQ10 levels in muscle tissue as well as in serum, which may contribute to the musculoskeletal side effects. Therefore, we aimed to assess the effect of newly initiated statin treatment on serum CoQ10 levels after acute ST-elevation myocardial infarction (STEMI) and the correlation of CoQ10 levels with key biomarkers of subclinical or clinically overt myopathy.

View Article and Find Full Text PDF

Background: Tissue damage by viral hepatitis is a major cause of morbidity and mortality worldwide. Oxidation reactions and reactive oxygen species (ROS) transform proteins and lipids in plasma low-density lipoproteins (LDL) into the abnormal oxidized LDL (ox-LDL). Hepatitis C virus (HCV) infection induces oxidative/nitrosative stress from multiple sources, including the inducible nitric oxide synthase (iNOS), the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases (NOX enzymes), and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!