Osteocytes are surrounded by hard bone matrix. Therefore, it has not previously been possible to demonstrate the real architecture of the osteocyte network in bone. We previously reported that it is possible to observe osteocytes in bone by labeling the cells with fluorescence and using confocal laser scanning (CLS) microscopy. In this study, we for the first time conducted an extensive analysis of the morphology and morphometry of the three-dimensional (3D) osteocyte structure using three-dimensionally reconstructed fluorescent images. Sixteen-day-old embryonic chick calvariae were stained with fluorescently labeled phalloidin and observed using a confocal laser scanning microscope. Morphometry of osteocytes in the calvaria was analyzed using extensive three-dimensional reconstructing software IMARIS, process length measuring software NEURON TRACER and cell surface area-/cell volume-analyzing software SURPASS. From the IMARIS-derived images, we found that the average of 10 osteocytes is 52.7 +/- 5.7 processes, and the point-to-point distance between centers of the osteocytes was 24.1 +/- 2.8 microm. In addition, we could calculate that each osteocyte spans an average of 4180 +/- 673 microm3 of bone volume. NEURON TRACER showed that the length of osteocyte processes was 0.26 +/- 0.02 microm per 1 microm3 bone compartment. In addition, SURPASS indicated that the surface area of osteocytes was 0.36 +/- 0.03 microm2 per 1 microm3 bone compartment and that the volume ratio of osteocyte cell body to bone compartment was 9.42% +/- 1.18%. Together, the average total length of the processes, the average surface area, and the average volume of one osteocyte were 1070 +/- 145 microm, 1509 +/- 113 microm2, and 394 +/- 49 microm3, respectively. It is possible to reconstruct the real architecture of the osteocyte network and obtain morphometric data from fluorescently labeled osteocytes in chick calvaria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2004.10.008 | DOI Listing |
Opt Express
August 2010
Center for Micro-integrated Optics for Advanced Bio-imaging and Control, Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA.
Temporal focusing of spatially chirped femtosecond laser pulses overcomes previous limitations for ablating high aspect ratio features with low numerical aperture (NA) beams. Simultaneous spatial and temporal focusing reduces nonlinear interactions, such as self-focusing, prior to the focal plane so that deep (approximately 1 mm) features with parallel sidewalls are ablated at high material removal rates (25 microm(3) per 80 microJ pulse) at 0.04-0.
View Article and Find Full Text PDFCytometry B Clin Cytom
March 2010
Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, USA.
Background: Over-expression of aldehyde dehydrogenase and other stem cell markers is characteristic of cells with tumorigenic potential in NOD/SCID mice. Most of these studies have focused on metastatic cells in bone marrow and on solid tumors. There are no studies on correlation of marker expression with ALDH1 expression in cells from human peripheral blood apheresis (HPC-A) samples.
View Article and Find Full Text PDFJ Biomech
March 2010
Keele University, Institute of Science and Technology in Medicine, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire ST4 4HE, United Kingdom.
Mechanical stimulation plays a key role in healing and remodelling of bone tissue in vivo, and is used in bone tissue regeneration strategies in vitro. Although macroscopic compression of three-dimensional (3-D) seeded constructs can increase bone formation, it is not yet reported how this response is related to differences in local mechanical strains inside the scaffolds. In this study, we experimentally test the hypothesis that differences in local average of heterogeneous strains in a polymer scaffold will correlate with induced differences in the local biological response.
View Article and Find Full Text PDFJ Magn Reson Imaging
October 2009
Medical Physics Department, Bellaria Hospital, Bologna, Italy.
Purpose: To analyze the 3D microarchitecture of rat lumbar vertebrae by micro-magnetic resonance imaging (micro-MRI).
Materials And Methods: micro-MR images (20 x 20 x 20 microm(3) apparent voxel size) were acquired with a three-dimensional spin-echo pulse sequence on four lumbar vertebrae of two rats. Apparent microarchitectural parameters like trabecular bone fraction (BV/TV), specific bone surface (BS/TV), mean intercept length (MIL), and Euler number per unit volume (Euler density, E(V)) were calculated using a novel semiquantitative variable threshold segmentation technique.
Med Phys
July 2009
Ionizing Radiation Standards, National Research Council of Canada, Ottawa K1A OR6, Canada.
Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!