Electroreduction of Cr(VI) to Cr(III) on reticulated vitreous carbon electrodes in a parallel-plate reactor with recirculation.

Environ Sci Technol

Instituto de Investigaciones Científicas, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito de Rocha, 36080 Guanajuato, Gto, Mexico.

Published: March 2005

The reduction of Cr(VI) to Cr(III) is achieved in a flow-by, parallel-plate reactor equipped with reticulated vitreous carbon (RVC) electrodes;this reduction can be accomplished by the application of relatively small potentials. Treatment of synthetic samples and field samples (from an electrodeposition plant) results in final Cr(VI) concentrations of 0.1 mg/L (i.e., the detection limit of the UV-vis characterization technique used here) in 25 and 43 min, respectively. Such concentrations comply with typical environmental legislation for wastewaters that regulate industrial effluents (at presenttime = 0.5 mg/L for discharges). The results show the influence of the applied potential, pH, electrode porosity, volumetric flow, and solution concentration on the Cr(VI) reduction percentage and on the required electrolysis time. Values for the mass transfer coefficient and current efficiencies are also obtained. Although current efficiencies are not high, the fast kinetics observed make this proposed treatment an appealing alternative. The lower current efficiency obtained in the case of a field sample is attributed to electrochemical activation of impurities. The required times for the reduction of Cr(VI) are significantly lower than those reported elsewhere.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es049091gDOI Listing

Publication Analysis

Top Keywords

crvi criii
8
reticulated vitreous
8
vitreous carbon
8
parallel-plate reactor
8
reduction crvi
8
current efficiencies
8
electroreduction crvi
4
criii reticulated
4
carbon electrodes
4
electrodes parallel-plate
4

Similar Publications

Understanding the geochemical mechanisms governing hexavalent chromium (Cr(VI)) in groundwater is essential for mitigating health risks. However, the processes driving Cr(VI) accumulation and migration in loess regions remain insufficiently understood. This study investigated the occurrence, release, and migration mechanisms of Cr(VI) across different groundwater environmental units (GEUs) in the south-central Loess Plateau, China.

View Article and Find Full Text PDF

Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia.

J Hazard Mater

December 2024

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China. Electronic address:

Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings.

View Article and Find Full Text PDF

In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.

View Article and Find Full Text PDF

Simple and Rapid HPLC-ICP-MS Method for the Simultaneous Determination of Cr(III) and Cr(VI) by Combining a 2,6-Pyridinedicarboxylic Acid Pre-Complexation Treatment.

Mass Spectrom (Tokyo)

December 2024

Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara-1, Sanda, Hyogo 669-1330, Japan.

A simple and rapid analytical method was developed for the simultaneous determination of two chromium species, Cr(III) and Cr(VI), in the environmental waters by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). This study incorporated a chelating pretreatment with 2,6-pyridinedicarboxylic acid (PDCA) to convert Cr(III) species into a stable Cr(III)-PDCA anion complex, which was then separated from Cr(VI) oxyanion using an anion exchange column. Building on the fundamental analytical approach proposed by Shigeta .

View Article and Find Full Text PDF

Photochemical oxidation of Cr(III) to Cr(VI) in the presence of Fe(III): Influence of Fe(III) concentration and UV wavelength.

J Hazard Mater

December 2024

Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan. Electronic address:

The reduction of Cr(VI) to Cr(III) is key to lowering environmental toxicity and mobility, but the reverse process remains less understood. We investigated Cr(III) oxidation mechanisms across various pH levels and light wavelengths (185, 254, and 358 nm) in the presence of Fe(III). At pH 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!