The EPR spectrum of the novel radical Mes*(CH3)P--PMes* (Mes*=2,4,6-(tBu)3C6H2) was measured in the temperature range 100-300 K, and was found to be drastically temperature dependent as a result of the large anisotropy of the 31P hyperfine tensors. Below 180 K, a spectrum of the liquid solution is accurately simulated by calculating the spectral modifications due to slow tumbling of the radical. To achieve this simulation, an algorithm was developed by extending the well-known nitroxide slow-motion simulation technique for the coupling of one electron spin to two nuclear spins. An additional dynamic process responsible for the observed line broadening was found to occur between 180 K and room temperature; this broadening is consistent with an exchange between two conformations. The differences between the isotropic 31P couplings associated with the two conformers are shown to be probably due to an internal rotation about the P--P bond.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200401276DOI Listing

Publication Analysis

Top Keywords

epr spectrum
8
diphosphanyl radical
4
radical potential
4
potential spin
4
spin label
4
label motion
4
motion epr
4
spectrum r1r2p--pr1
4
r1r2p--pr1 radical
4
radical epr
4

Similar Publications

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Construction of environmentally stable self-adhesive conductive cellulose hydrogel for electronic skin sensor via autocatalytic fast polymerization strategy at room temperature.

Int J Biol Macromol

January 2025

Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China. Electronic address:

Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system.

View Article and Find Full Text PDF

Singlet fission in carotenoid dimers - the role of the exchange and dipolar interactions.

Phys Chem Chem Phys

January 2025

Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK.

A theory of singlet fission in carotenoid dimers is presented which aims to explain the mechanism behind the creation of two uncorrelated triplets. Following the excitation of a carotenoid chain "bright" B+u state, there is ultrafast internal conversion to the intrachain "dark" 1B-u triplet-pair state. This strongly exchange-coupled state evolves into a pair of triplets on separate chains and spin-decoheres to form a pair of single, unentangled triplets, corresponding to complete singlet fission.

View Article and Find Full Text PDF

Visible light-driven copper vanadate/biochar nanocomposite for heterogeneous photocatalysis degradation of tetracycline: Performance, mechanism, and application of machine learning.

Environ Res

December 2024

Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530006, China. Electronic address:

Water pollution caused by antibiotics is considered a major and growing issue. To address this challenge, high-performance copper vanadate-based biochar (CuVO/BC) nanocomposite photocatalysts were prepared to develop an efficient visible light-driven photocatalytic system for the remediation of tetracycline (TC) contaminated water. The effects of photocatalyst mass, solution pH, pollutant concentration, and common anions on the TC degradation were investigated in detail.

View Article and Find Full Text PDF

Targeting iron metabolism has emerged as a novel therapeutic strategy for the treatment of cancer. As such, iron chelator drugs are repurposed or specifically designed as anticancer agents. Two important chelators, deferasirox (Def) and triapine (Trp), attack the intracellular supply of iron (Fe) and inhibit Fe-dependent pathways responsible for cellular proliferation and metastasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!