Mouse splenocytes and hamster peritoneal exudate cells (PEC), including macrophages, were shown to contain a predominantly Na(+)-dependent and inhibitor (6-[(4-nitrobenzyl)-mercapto]purine ribonucleoside, NBMPR)-resistant transport system for adenosine and other nucleosides. Adenosine (1 microM) was transported about equally in mouse thymocytes and human monocytes from peripheral blood by a Na(+)-dependent system and the NBMPR-sensitive facilitated diffusion system. Hamster PEC also transported inosine, tubercidin, formycin B, uridine, and thymidine in a NBMPR-insensitive manner. With the exception of formycin B, all nucleosides were phosphorylated intracellularly to varying degree, adenosine being almost fully phosphorylated. During the time course of routine experiments (30 s) formycin B was concentrated twofold over external medium levels (1 microM) without any drop-off in the transport rate. On the basis of metabolic studies it was estimated that uridine and tubercidin were also transported against a concentration gradient. Inosine, guanosine, 2'-deoxyadenosine, tubercidin, formycin B, and the pyrimidines uridine, thymidine, and cytidine (all 100 microM) inhibited transport of adenosine and inosine about 50-100%, while 3'-deoxyinosine showed weak inhibitory action. Transport of thymidine was strongly inhibited by nucleosides except by 3'-deoxyinosine. The Na(+)-dependent, active, and concentration transport system appears to be a feature of many immune-type cells, and its presence offers particular conceptual possibilities for the therapy of infections located in these cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/y92-005 | DOI Listing |
Curr Med Chem
January 2025
Laboratory of Angiopathology Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, 125315, Moscow, Russia.
This review discusses the possibility of inheritance of some diseases through mutations in mitochondrial DNA. These are examples of many mitochondrial diseases that can be caused by mutations in mitochondrial DNA. Symptoms and severity can vary widely depending on the specific mutation and affected tissues.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.
Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Parasitic helminths secrete extracellular vesicles (EVs) into their host tissues to modulate immune responses, but the underlying mechanisms are poorly understood. We demonstrate that Ascaris EVs are efficiently internalised by monocytes in human peripheral blood mononuclear cells and increase the percentage of classical monocytes. Furthermore, EV treatment of monocytes induced a novel anti-inflammatory phenotype characterised by CD14, CD16, CC chemokine receptor 2 (CCR2) and programmed death-ligand 1 (PD-L1) cells.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Pediatrics, Donghai Hospital Affiliated to Kangda College of Nanjing Medical University, Jiangsu Lianyungang, 223000, China.
Background: To assess the value of combined Monocyte Distribution Width (MDW) and Procalcitonin (PCT) detection in diagnosing and predicting neonatal sepsis outcomes.
Methods: This retrospective study, conducted from January 2022 to December 2023.A retrospective analysis of 39 neonatal sepsis and 30 non-infectious systemic inflammatory response syndrome (SIRS) cases was conducted.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!