A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A protocol for building and evaluating predictors of disease state based on microarray data. | LitMetric

A protocol for building and evaluating predictors of disease state based on microarray data.

Bioinformatics

Department of Mediamatics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology Mekelweg 4, 2628 CD Delft, The Netherlands.

Published: October 2005

Motivation: Microarray gene expression data are increasingly employed to identify sets of marker genes that accurately predict disease development and outcome in cancer. Many computational approaches have been proposed to construct such predictors. However, there is, as yet, no objective way to evaluate whether a new approach truly improves on the current state of the art. In addition no 'standard' computational approach has emerged which enables robust outcome prediction.

Results: An important contribution of this work is the description of a principled training and validation protocol, which allows objective evaluation of the complete methodology for constructing a predictor. We review the possible choices of computational approaches, with specific emphasis on predictor choice and reporter selection strategies. Employing this training-validation protocol, we evaluated different reporter selection strategies and predictors on six gene expression datasets of varying degrees of difficulty. We demonstrate that simple reporter selection strategies (forward filtering and shrunken centroids) work surprisingly well and outperform partial least squares in four of the six datasets. Similarly, simple predictors, such as the nearest mean classifier, outperform more complex classifiers. Our training-validation protocol provides a robust methodology to evaluate the performance of new computational approaches and to objectively compare outcome predictions on different datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bti429DOI Listing

Publication Analysis

Top Keywords

computational approaches
12
reporter selection
12
selection strategies
12
gene expression
8
training-validation protocol
8
protocol
4
protocol building
4
building evaluating
4
predictors
4
evaluating predictors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!