Transcription factor GATA-1 plays an important role in gene regulation during the development of erythroid cells. Several reports suggest that GATA-1 plays multiple roles in survival, proliferation, and differentiation of erythroid cells. However, little is known about the relationship between the level of GATA-1 expression and its nature of multifunction to affect erythroid cell fate. To address this issue, we developed in vitro embryonic stem (ES) culture system by using OP9 stromal cells (OP9/ES cell co-culture system), and cultured the mutant (GATA-1.05 and GATA-1-null) and wild type (WT)ES cells, respectively. By using this OP9/ES cell co-culture system, primitive and definitive erythroid cells were developed individually, and we examined how expression level of GATA-1 affects the development of erythroid cells. GATA-1.05 ES-derived definitive erythroid cells were immature with the appearance of proerythroblasts, and highly proliferated, compared with WT and GATA-1-null ES-derived erythroid cells. Extensive studies of cell cycle kinetics revealed that the GATA-1.05 proerythroblasts accumulated in S phase and expressed lower levels of p16(INK4A) than WT ES cell-derived proerythroblasts. We concluded that GATA-1 must achieve a critical threshold activity to achieve selective activation of specific target genes, thereby influencing the developmental decision of an erythroid progenitor cell to undergo apoptosis, proliferation, or terminal differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M500081200DOI Listing

Publication Analysis

Top Keywords

erythroid cells
24
erythroid
9
gata-1 expression
8
survival proliferation
8
proliferation differentiation
8
differentiation erythroid
8
gata-1 plays
8
development erythroid
8
cells
8
level gata-1
8

Similar Publications

Nrf2 Activation as a Therapeutic Target for Flavonoids in Aging-Related Osteoporosis.

Nutrients

January 2025

College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA.

Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP.

View Article and Find Full Text PDF

The hypoxia-inducible factor (HIF) pathway has been demonstrated to play a pivotal role in the process of high-altitude adaptation. PHD2, a key regulator of the HIF pathway, has been found to be associated with erythropoiesis. However, the relationship between changes in Phd2 abundance and erythroid differentiation under hypoxic conditions remains to be elucidated.

View Article and Find Full Text PDF

Oxidative stress, endoplasmic reticulum (ER) stress, and alterations in autophagy activity have been described as prominent factors mediating many pathological processes in chronic kidney disease (CKD). The accumulation of misfolded proteins in the ER may stimulate the unfolded protein response (UPR). The interplay between autophagy and UPR in hemodialysis (HD) patients remains unclear.

View Article and Find Full Text PDF

Synthesis and Anti-Cancer Activity In Vitro of Synephrine Derivatives.

Biomolecules

December 2024

Department of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center for Oncology, Kashirskoe Shosse 24-15, Moscow 115478, Russia.

Glucocorticoids (GCs) are routinely used to treat hematological malignancies; however, long-term treatment with GCs can lead to atrophic and metabolic adverse effects. Selective glucocorticoid receptor agonists (SEGRAs) with reduced side effects may act as a superior alternative to GCs. More than 30 SEGRAs have been described so far, yet none of them reached clinical trials for anti-cancer treatment.

View Article and Find Full Text PDF

Antioxidant and Laxative Effects of Methanol Extracts of Green Pine Cones () in Sprague-Dawley Rats with Loperamide-Induced Constipation.

Antioxidants (Basel)

December 2024

Department of Biomaterials Science (BK 21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea.

Oxidative stress is the key cause of the etiopathogenesis of several diseases associated with constipation. This study examined whether the green pine cone can improve the symptoms of constipation based on the antioxidant activities. The changes in the key parameters for the antioxidant activity and laxative effects were examined in the loperamide (Lop)-induced constipation of Sprague-Dawley (SD) rats after being treated with the methanol extracts of green pine cone (MPC, unripe fruits of ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!